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Abstract
Whiteflies (Hemiptera: Aleyrodidae) are important insect pests causing serious damage to plants and transmitting hundreds 
of plant viruses. Climate change is expected to influence life history and trophic interactions among plants, whiteflies and 
their natural enemies. Here, we review the potential impacts of climate change on whiteflies and the likely consequences for 
agricultural systems. This review concludes that while climatic stress tends to negatively affect life history traits, the effects 
differ with the tolerance of the whiteflies and the amount of stress experienced. Whiteflies also differ in their adaptability. 
Better adapted species will likely experience increased distribution and abundance provided their tolerance limits are not 
exceeded, while species with lower tolerance and adaptation limits will suffer reduced fitness, which will have overall effects 
on their distribution and abundance in space and time. The majority of methods used to control whiteflies will still be useful 
especially if complementary methods are combined for maximum efficacy. Parasitism and predation rates of whitefly natural 
enemies could increase with temperature within the optimum ranges of the natural enemies, although life history traits and 
population growth potential are generally maximised below 30 °C. Changes in climatic suitability modifying the distribution 
and abundance of whiteflies, and environmental suitability for plant viruses, will likely affect epidemics of viral diseases. 
Greater efforts are required to improve understanding of the complex effects of climate change on multi-species and multi-
trophic interactions in the agro-ecological systems inhabited by whiteflies, and to use this new knowledge to develop robust 
and climate-smart management strategies.
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Key message

• An in-depth review was conducted to address the weak 
current understanding of the potential influence of cli-
mate change on whiteflies.

• Our study highlights the dynamism of the interactions 
between vector, natural enemies and transmitted viruses, 
and confirms that the impacts of climate change will vary 
widely depending on local circumstances.

• Future efforts to manage whiteflies must be cognisant 
of the complex effects of climate on the agro-ecological 
systems inhabited by these globally important insects.
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Introduction

Whiteflies are important global agricultural pests (Oliveira 
et al. 2001). They have a wide host range and are very 
adaptive to different environmental conditions (Oliveira 
et al. 2001; CABI 2017). The Bemisia tabaci (Gennadius) 
species group is the most economically important whitefly 
(Lowe et al. 2000; Navas-Castillo et al. 2011). It causes 
damage to crops directly through phloem feeding as well 
as the excretion of honeydew leading to the growth of 
sooty moulds that reduce photosynthesis. Whiteflies also 
cause indirect damage through the transmission of eco-
nomically important viral plant pathogens (Navas-Castillo 
et al. 2011; Tzanetakis et al. 2013; Polston et al. 2014). 
Crop damage due to plant viruses transmitted by whiteflies 
globally results in losses worth more than $US 1 billion 
(Gonzalez et al. 1992; Legg et al. 2006).

The Intergovernmental Panel on Climate Change 
(IPCC) fifth assessment report predicted a 1.5 °C increase 
in global surface temperature, and an increasing contrast in 
precipitation between wet and dry regions over the twenty-
first century (IPCC 2013). Independent observations by 
the National Oceanic and Atmospheric Administration 
(NOAA) and the National Aeronautics and Space Admin-
istration (NASA) showed that globally, temperatures in 
2016 were 0.99  °C warmer compared to records from 
the twentieth century, and the third year in a row to set a 
new record high temperature (NASA 2017). Global  CO2 
concentration is the primary driver of the recent anthro-
pogenic climate change. While the global concentration 
of  CO2 in the atmosphere reached 400 parts per million 
(ppm) for the first time in recorded history in 2013, the 
trend has continued, with the 2016 estimate at 404.4 ppm 
(NASA 2013, 2016).

Climatic change is affecting agricultural and natural 
ecosystems and directly affects the development, repro-
duction, survival, population dynamics, potential distribu-
tion and abundance of whitefly species (Muñiz and Nomb-
ela 2001; Bonato et al. 2007; Bellotti et al. 2012; Gilioli 
et al. 2014). Some studies have reported direct effects of 
temperature (Xie et al. 2011; Guo et al. 2013; Han et al. 
2013),  CO2 (Koivisto et al. 2011; Curnutte et al. 2014), 
and  O3 (Cui et al. 2012, 2014) on life history traits. Oth-
ers have discussed effects of rainfall (Castle et al. 1996; 
Naranjo and Ellsworth 2005; Naranjo et al. 2009; Sharma 
and Yogesh 2014) on whiteflies.

At the present time, information on the potential influ-
ence of climate change on whiteflies is limited and effects 
of climate change on several biological parameters of 
whiteflies are poorly understood. New research initiatives 
aim to deepen insights into the influence of climate change 
on whiteflies, and on the tri-trophic interactions within the 

agricultural systems in which they cause so much damage. 
This review explores the influence of climate change on 
the life history, distribution, population dynamics and effi-
cacy of management strategies of whiteflies. Through this 
analysis, we have been able to identify important trends 
for some whitefly species and biological parameters, and 
based on these, we highlight needs for further research.

How will whiteflies respond to climate 
change?

Life history traits

There are differences in response of whiteflies to climate 
change resulting from differences in whitefly species, host 
plants, climatic zones and climate factors. The response of 
different whiteflies and host plants to changes in climatic 
factors are summarised in Table 1. Temperature and host-
plant effects have been identified as important factors affect-
ing development, mortality and fecundity rates in whitefly 
populations. Temperature increase within the thermal opti-
mum leads to a decrease in developmental time (Madueke 
and Coaker 1984; Sengonca and Liu 1999; Muñiz and 
Nombela 2001; Nava-Camberos et al. 2001; Bayhan et al. 
2006; Bonato et al. 2007; Xie et al. 2011; Han et al. 2013). 
These trends are commonly observed in insects due to the 
influence of temperature on their physiology. Other effects 
of temperature increase (especially above the optimum 
threshold) on life history traits include decreasing fecun-
dity (Bonato et al. 2007; Xie et al. 2011; Guo et al. 2013) 
and decreasing longevity (Sengonca and Liu 1999; Bonato 
et al. 2007; Guo et al. 2013). Elevated  CO2 and  O3 increased 
developmental time of whiteflies (Cui et al. 2012; Wang 
et al. 2014), but elevated  CO2 did not affect adult longevity 
(Koivisto et al. 2011; Curnutte et al. 2014) and fecundity of 
whiteflies (Curnutte et al. 2014; Wang et al. 2014). There is 
a dearth of information regarding the effects of elevated  O3 
on whitefly longevity and fecundity (Table 1).

In nature, insects often experience stressful temperatures 
(high and low) that may affect not only their life history, but 
also their distribution and abundance (Cui et al. 2008; Lü 
et al. 2014b). Research on the thermal biology of insects 
has revealed that the ability of insects to tolerate extreme 
temperatures is one of the most crucial biotic factors defin-
ing the distribution of most insects, which may have further 
implications in the face of global climate change (Bowler 
and Terblanche 2008; Cui et al. 2008; Ma et al. 2014). There 
is an increasing number of empirical studies on thermotoler-
ance and its associated evolutionary implications in white-
flies. Traits commonly investigated are survival, fecundity 
and viability of the offspring after heat shock.
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Table 1  Effects of climatic factors on life history traits that include fecundity, immature development time and adult longevity of whiteflies

Whitefly spp. Host plant Climatic variable Effects on 
life history 
trait

Range** Geographic loca-
tions

Key references

Fecundity
B. tabaci MEAM1 Eggplant, tomatoes, Temperature 

increase
– 20–32a USA; China; China Wang and Tsai 

(1996)*, Qiu et al. 
(2003) and Guo 
et al. (2013)

B. tabaci MED Tomatoes Temperature 
increase

– 21–5 France Bonato et al. (2007)

Trialeurodes 
vaporariorum 
(Westwood)

Kidney bean,
Brassica spp.

Temperature 
increase

– 19–26;
15–24

Colombia; China Manzano and Len-
teren (2009) and 
Xie et al. (2011)

B. tabaci MEAM1 Brassica spp. Temperature 
increase

+ 15–24 China Xie et al. (2011)

T. vaporariorum Tomatoes Elevated  CO2 – 400–1200 Finland Koivisto et al. (2011)
B. tabaci MEAM1 Collard, Cotton Elevated  CO2 0 424–753;

375–750
USA; China Curnutte et al. (2014) 

and Wang et al. 
(2014)

B. tabaci MEAM1 Tomatoes Elevated ozone – 37.3–72.2*** China Cui et al. (2012)
Immature developmental time
B. tabaci MEAM1 

and MED
Sweet pepper Temperature 

increase
– 17–33 Spain Muñiz and Nombela 

(2001)
B. tabaci MED Tomatoes, Sweet 

pepper, Eggplant 
and Oriental melon

Temperature 
increase

– 15–30 France; Korea Bonato et al. (2007) 
and Han et al. 
(2013)

T. vaporariorum Greenhouse crops Temperature 
increase

– 18–27 England Madueke and Coaker 
(1984)

B. tabaci MEAM1 Fruits and vegetables Temperature 
increase

– 20–30b USA; China; Turkey Nava-Camberos et al. 
(2001)*, Yang and 
Chi (2006)* and 
Bayhan et al. (2006)

Aleurotuberculatus 
takahashi (David 
et Subramaniam)

Citrus Temperature 
increase

– 15–35 China Sengonca and Liu 
(1999)

B. tabaci MEAM1 
and T. vaporari-
orum

Brassica spp. Temperature 
increase

– 15–24 China Xie et al. (2011)

Bemisia afer 
(Priesner and 
Hosny)

Sweet potato Temperature 
increase

– 17–25 Peru Gamarra et al. 
(2016b)

B. tabaci MEAM1 Cotton Elevated  CO2 + 375–750 China Wang et al. (2014)
B. tabaci MEAM1 Tomatoes Elevated ozone + 37.3–72.2*** China Cui et al. (2012)
Adult longevity
B. tabaci MEAM1 Eggplant, Tomatoes Temperature 

increase
– 20–32c China; USA; China Qiu et al. (2003), 

Wang and Tsai 
(1996)* and Guo 
et al. (2013)

A. takahashi Citrus Temperature 
increase

– 15–35 China Sengonca and Liu 
(1999)

B. tabaci MED Tomatoes Temperature 
increase

– 21–35 France Bonato et al. (2007)

T. vaporariorum Kidney bean Temperature 
increase

– 19–26 Colombia Manzano and Len-
teren (2009)

B. afer Sweet potato Temperature 
increase

– 17–28 Peru Gamarra et al. 
(2016b)

T. vaporariorum Tomatoes Elevated  CO2 0 400–1200 Finland Koivisto et al. (2011)
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Comparing both B. tabaci MEAM1 and MED, Maha-
dav et al. (2009), Elbaz et al. (2011) and Xiao et al. (2016) 
showed that survival of both species reduced as tempera-
ture increased, and that B. tabaci MED performed better 
than MEAM1 after brief exposure to higher temperatures 
(41–45 °C). Similarly, Cui et al. (2008) showed that sur-
vival rates drop after brief exposure to higher temperatures 
(39–45 °C), and B. tabaci MEAM1 is more thermotolerant 
than T. vaporariorum. A similar decline in survival after 
exposure to high temperatures was also reported for B. 
tabaci MED (Zhu et al. 2010; Lü et al. 2014a) and B. tabaci 
MEAM1 (Muñoz-Valencia et al. 2013; Díaz et al. 2015). 
Fecundity of whiteflies after brief exposure to heat shock 
generally reduces with temperature increase (Elbaz et al. 
2011; Xiao et al. 2016). However, other studies have shown 
no significant effect (Cui et al. 2008; Zhu et al. 2010; Lü 
et al. 2014a). Furthermore, progeny viability post-heat shock 
could either decrease (Cui et al. 2008; Díaz et al. 2015) or 
show an inconsistent pattern (Muñoz-Valencia et al. 2013; 
Xiao et al. 2016) with temperature increase. Several studies 
on thermotolerance and life history of whiteflies suggest that 
female B. tabaci are more thermotolerant than males (Cui 
et al. 2008; Muñoz-Valencia et al. 2013; Ma et al. 2014).

In some cases, significant differences in thermotoler-
ance have been reported among populations experiencing 
different levels of environmental stress, pointing towards 
adaptive divergence (Díaz et al. 2014; Ma et al. 2014). For 
instance, Díaz et al. (2014) associated significant differences 
in survival and fecundity among populations with mean tem-
perature and temperature variation in the local environment, 
respectively. Similarly, Ma et al. (2014) also demonstrated 
that differences in habitat temperature resulted in significant 
differences in the adaptive strategies to heat stress between 
the Harbin and Turpan B. tabaci MED populations from 
China. Their work suggests that adaptive microevolution of 
B. tabaci is directly related to its high narrow-sense her-
itability for both heat and cold resistance. These potential 

evolutionary changes could be used by B. tabaci to main-
tain its populations with climate change (Ma et al. 2014). 
Elbaz et al. (2011) showed that B. tabaci MEAM1 and MED 
deploy different adaptation strategies when experiencing 
heat stress. B. tabaci MEAM1 achieves maximum repro-
duction at the expense of soma protection, while B. tabaci 
MED invests more of its resources on processes beneficial 
to somatic maintenance. In another interesting study, Lü 
et al. (2014b) highlighted the significance of stress-inducing 
conditions on the ecological adaptations and distribution of 
insects in the context of climate change. Their work dem-
onstrated that thermotolerance and longevity were more 
important than reproductive traits, and that enhanced ther-
motolerance and prolonged longevity were essential adaptive 
strategies that contributed to the survival of MEAM1 under 
the hot and harsh desert climate reported in the study. Pusag 
et al. (2012) showed that acquisition of Tomato yellow leaf 
curl virus (TYLCV) by B. tabaci MED resulted in increased 
development rate and increased susceptibility to thermal 
stress which may result in a decline in vector longevity. This 
highlights how the complex interactions between vector fit-
ness and thermal stress could influence the ability of the 
vector to acquire and transmit plant viruses especially with 
climate change.

Apart from temperature and other environmental fac-
tors, other important factors could influence the life history 
and response of whiteflies to climate change. For instance, 
adaptation to one environmental stress (insecticides like 
thiamethoxam) increased thermotolerance in B. tabaci 
MEAM1 (Su et al. 2018) which could be beneficial to B. 
tabaci MEAM1 in the light of climate change. Absence of 
secondary endosymbionts in cassava-colonising whiteflies 
increased their fitness and vector abilities, and a possible 
ecosystem service in suppressing populations of cassava-
colonising whiteflies has been proposed (Ghosh et al. 2018). 
Nutrition and defensive chemistry of host plants (Jiao et al. 

Table 1  (continued)

Whitefly spp. Host plant Climatic variable Effects on 
life history 
trait

Range** Geographic loca-
tions

Key references

B. tabaci MEAM1 Cotton Elevated  CO2 0 375–750 China Wang et al. (2014)

+Represents an increase; −represents a decrease; 0 represents no change
MEAM1 (Middle East-Asia Minor 1) = B biotype; MED (Mediterranean) = Q biotype
*B. argentifolii = MEAM 1
**Temperatures were measured in °C,  CO2 and ozone levels are in ppm except where otherwise stated
***Measured in nmol/mol
a Wang and Tsai (1996) and Guo et al. (2013) reported up to 35 °C and 37 °C, respectively
b Yang and Chi (2006) reported a range comprising from 15 °C and 35 °C
c Guo et al. (2013) reported 27–37 °C, while Wang and Tsai (1996) reported up to 35 °C
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2018) could also influence the response of whiteflies to cli-
mate change.

Population dynamics

The major factors that regulate population dynamics are 
climate, natural enemies, initial population size, host-plant 
suitability, farming systems and management practices 
(Price et al. 2011). Generally, rainfall has been noted to 
negatively affect populations of B. tabaci (Naranjo and Ells-
worth 2005; Sharma and Yogesh 2014). Using sprinkler irri-
gation to simulate rainfall, Castle et al. (1996) found a con-
sistent reduction in densities of immature whiteflies. Some 
of the most abundant populations of B. tabaci in history 
were from irrigated desert cropping systems where consist-
ently high temperatures shorten generation times and rainfall 
is infrequent (Naranjo et al. 2009). Experiments considering 
prolonged exposure to constant temperatures and brief expo-
sure to heat shock agree that elevated temperatures (above 
the optimum threshold of whiteflies) negatively affect life 
history of whiteflies. However with climate change, high 
thermotolerance and the polyphagous nature of some white-
flies (B. tabaci MEAM1 and MED) which contribute to their 
invasion success could possibly facilitate their population 
increase in some locations depending on the amount of heat 
stress experienced (Bellotti et al. 2012; EFSA 2013; Gilioli 
et al. 2014; Gamarra et al. 2016b). By combining general 
circulation models (GCMs) with a stochastic weather gen-
erator and population dynamics models, Zidon et al. (2016) 
studied population dynamics of B. tabaci in three locations 
in the Mediterranean region under two future scenarios. 
Their study suggests that temperature increase will increase 
population size and average number of generations com-
pleted by B. tabaci yearly, and a lengthening of growing 
season in the three locations.

Bemisia afer (Priesner and Hosny) can go through 8–10 
and 4–8 generations per year in tropical and subtropical 
regions respectively, under current temperature conditions, 
while T. vaporariorum can have up to 11 generations per 
year (Gamarra et al. 2016a, c). Considering the effects of 
climatic change up to 2050, B. afer is predicted to increase 
by only 1 generation per year in temperate regions of 
Europe, North America and parts of Asia. An increase of 
1–2 generations per year is predicted for tropical and sub-
tropical regions in Asia (Malaysia, Philippines, Indonesia); 
Europe (Portugal); South America (southern Brazil, cen-
tral Colombia, Peruvian coast); Central, East, and South-
ern Africa; the Caribbean; central and southern China; 
and Oceania (Papua New Guinea) (Gamarra et al. 2016a). 
Furthermore, an increase of 1–2 generations per year is 
predicted for T. vaporariorum in most tropical regions. T. 
vaporariorum will likely have a small increase in temper-
ate regions (mainly Europe and North America), while 

increasing temperatures around the Equator will possibly 
reduce T. vaporariorum activity (Gamarra et al. 2016c).

Increases in the number of generations do not neces-
sarily translate into range expansion or elevated white-
fly populations. Generally, increasing temperature within 
developmental thresholds leads to an increase in insect 
population by reducing development time and hastening 
metabolic and physiologic activities. However, at extreme 
temperatures (above optimum), other important life history 
traits are negatively affected (Qiu et al. 2003; Bonato et al. 
2007). Hence, with a high number of generations per year 
due to faster development rate, there is also an increased 
possibility of lower population increase over time. Never-
theless, these same studies that indicated increased num-
ber of generations based on generation index (which meas-
ures mean number of generations that can be produced 
by an insect within a given year) (Gamarra et al. 2016a, 
b, c) also presented a more robust estimate of changes in 
abundance of insects called activity index, which accounts 
for the whole life history traits, measures the rate of finite 
increase and also indicates the severity of the pest prob-
lem. Based on this additional estimate, climate change is 
predicted to cause a small increase in the population of 
T. vaporariorum in the temperate regions of Europe and 
America, while T. vaporariorum populations along the 
Equator will likely reduce with increasing temperature. 
Similarly, due to climate change, the population growth 
potential of B. afer is predicted to decrease in most of 
the sweet potato growing areas in tropical and subtropical 
regions. However, the abundance of B. afer will poten-
tially increase in southern subtropical and temperate zones 
(Gamarra et al. 2016a). For B. tabaci MEAM1, a small 
increase in potential growth is predicted for most tropical 
and subtropical regions. B. tabaci MEAM1 populations 
will possibly reduce along the Equator as temperature 
increases (Gamarra et al. 2016b). Furthermore, based on 
the activity index and generation index available in the 
Insect Life Cycle Modelling software used by Gamarra 
et al. (2016a, 2b, c), populations of cassava-colonising B. 
tabaci sub-Saharan Africa 1—Sub-Group 3 (SSA1-SG3) 
have been predicted to increase in East, Central and South-
ern Africa (Aregbesola 2018). Using the Physiologically 
Based Demographic Model, Gilioli et al. (2014) simu-
lated changes in distribution and population of B. tabaci 
MED in Europe considering a worst-case scenario (upper 
threshold for development, survival and fecundity) and 
indicated that climate change resulted in increased popu-
lation density and infestation of B. tabaci MED which is 
highly consistent with the high thermotolerance previously 
reported for B. tabaci MED.
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Movement and distribution

Spread of whiteflies is facilitated partly by human trans-
portation of infested plant materials, but there is increasing 
concern that climate change allows establishment in hitherto 
unsuitable regions (Bebber et al. 2013). Climate change will 
also have additional implications for the invasion success of 
whitefly species as climatic suitability and overall commu-
nity interaction will play a key role in the establishment and 
geographical expansion of the introduced whitefly species. 
Ecological niche models which generate maps of a species’ 
environmental suitability based on its current distribution 
(e.g. Campo et al. 2011; Jarvis et al. 2012; Bellotti et al. 
2012), and insect physiology-based models (e.g. Gilioli et al. 
2014; Gamarra et al. 2016a, b, c; Aregbesola 2018) which 
utilise detailed descriptions of the life history of the insect, 
provide very powerful tools to assess the potential impact of 
climate change on the distribution of whiteflies. Both eco-
logical niche modelling and physiology-based modelling are 
commonly used, and our review considers research relating 
to both approaches.

In Europe, expansion of B. tabaci northwards is expected 
to be limited by low temperatures, reducing the risk of B. 
tabaci establishment because of climatic limitations (Gilioli 
et al. 2014). B. tabaci could possibly expand its range in 
some of the Mediterranean countries (Spain, France, Italy 
and Greece) and in countries along the Adriatic coast line 
(Gilioli et al. 2014) as a consequence of climate change. 
Increased climatic suitability for B. tabaci has been pre-
dicted to occur in northern Argentina, south-central Bolivia, 
north-eastern Brazil, south-west Peru, northern Australia, 
southern China, as well as parts of the USA (Bellotti et al. 
2012). A similar trend is predicted for Central African 
Republic, Ethiopia and Cameroon (Jarvis et al. 2012) and 
southern India (Campo et al. 2011). There will also be more 
B. tabaci further south, in regions where there is a cool and 
dry winter (Bellotti et al. 2012; Aregbesola 2018). Accord-
ing to Gamarra et al. (2016a, b), in 2050, temperature will 
potentially reduce B. afer and T. vaporariorum establish-
ment in current high-risk areas of the tropics globally. By 
contrast, the risk of establishment of B. afer will increase in 
the subtropical sweet potato growing areas of South Africa, 
southern Brazil, Peru, Uruguay, Chile and Argentina. The 
temperate regions of Europe, North America and Asia will 
become increasingly suitable for T. vaporariorum, although 
the risk of establishment will still be very low (Gamarra 
et al. 2016a, c).

Since virus transmission by whiteflies is mainly mediated 
by B. tabaci and T. vaporariorum, any change in the distribu-
tion of these vectors may affect the overall geography of viral 
diseases. Populations of B. tabaci are distributed in tropical 
and subtropical zones all around the globe and viruses trans-
mitted by B. tabaci are found—as a group—roughly within 

the same areas (Navas-Castillo et al. 2011) although local 
patterns of seasonal temperature, precipitation and altitude 
appear to play an important role (Morales and Jones 2004). 
Sporadic records of viruses from greenhouse plants in cooler 
climates most likely reflect the importation of infected plant 
material and not per se the natural spread of viruses (Boter-
mans et al. 2009). However, any future increase in tempera-
ture will allow populations of B. tabaci to expand towards 
the poles and the epidemic areas of the viruses vectored 
will most likely follow (Bebber et al. 2013). A scenario of 
climate change has been outlined for B. tabaci and begomo-
viruses using TYLCV in Europe as an example. Manifest 
and frequent infection of field-grown tomato by TYLCV in 
Europe is restricted to the most southern, coastal/lowland 
regions, particularly the islands of Cyprus, Crete, Sicily, Sar-
dinia and the southern parts of Spain and Portugal (Khan 
et al. 2013). The same regions are characterised by year-
round outdoor cultivation of tomato (main virus host) and 
the presence of populations of B. tabaci (EFSA 2013; Gilioli 
et al. 2014). In case of a temperature increase of 2 °C, both 
studies predict a movement of established populations of B. 
tabaci approximately 300–500 km northwards, taking into 
account significant local variations due to local topography. 
The spread of TYLCV in open fields is expected to follow 
the same pattern (Table 2). 

Efficacy of management strategies

Evidence from Wang et al. (2014) indicates that the biologi-
cal control of B. tabaci by Encarsia formosa (Gahan) would 
not be influenced by transgenic Bt cotton and/or elevated 
 CO2. Cui et al. (2014) suggest that elevated  O3 enhanced 
the attraction of En. formosa to whiteflies with resulting 
augmented biological control. This probably relates to the 
enhanced production of volatile organic compounds by the 
host plant, which indirectly increased the attraction of En. 
formosa to whiteflies. Furthermore, it has been experimen-
tally confirmed that parasitism and predation rates of white-
fly natural enemies could increase with temperature within 
the optimum ranges of the natural enemies as in the case 
of En. formosa (Burnett 1949; Enkegaard 1994; Qiu et al. 
2004; Zilahi-Balogh et al. 2006), Eretmocerus eremicus 
(Rose & Zolnerowich) (Qiu et al. 2004), Er. mundus (Mer-
cet) (Qiu et al. 2004), Eretmocerus spp. (McCutcheon and 
Simmons 2001), Delphastus catalinae (Horn) (Simmons and 
Legaspi 2004) and Nesidiocoris tenuis (Reuter) (Madbouni 
et al. 2017). Similarly, walking speed, walking activity and 
flight activity of whitefly natural enemies have been shown 
to be positively correlated with temperature (van Roermund 
and van Lenteren 1995; Bonsignore 2016), while handling 
time decreases with temperature increase (Enkegaard 1994; 
Madbouni et al. 2017). Comparable studies on the impact of 
temperature on walking pattern and flight activity of whitefly 
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are very scarce; however, Reader and Southwood (1984) 
suggest that temperature did not strongly affect flight activ-
ity of Aleurotuba jelinekii (Frauenfeld). For most natural 
enemies, however, immature survival, fecundity, adult lon-
gevity and intrinsic rate of natural increase are maximised 
below 30 °C, and above this temperature the chance of popu-
lation expansion drops significantly (Table 3). Of course, 
the effects of diurnal temperature regimes could increase 
adaptability of these insects (Kingsolver et al. 2015). Hence, 
how a natural enemy responds to temperature increase will 
be a function of its life history traits in relation to the amount 
of environmental stress experienced (Qiu et al. 2004; Qiu 
et al. 2006; Zandi-Sohani and Shishehbor 2011; Malekmo-
hammadi et al. 2012), which could either favour population 
build up or decline (Deutsch et al. 2008; Youngsteadt et al. 
2017). In line with this, biocontrol companies recommend 
temperatures between 21 and 29 °C for optimal performance 
of commercially available natural enemies. To ensure effi-
cacy of their products, commercial producers of whitefly 
biocontrol products now combine more than one natural 
enemy. For instance, En. formosa is combined with Er. ere-
micus to harness the rapid population growth potential of 
En. formosa and high temperature tolerance of Er. eremicus 
(Biobest 2017).

Host-natural enemy interactions are not linear or directly 
predictable due to complex species and environment interac-
tions. Greenberg et al. (2000) compared the life history of 
Er. eremicus and two host whiteflies (T. vaporariorum and 
B. tabaci MEAM1), while Burnett (1949) compared the life 
history of T. vaporariorum and En. formosa under the same 
experimental conditions, respectively. Their results show 
that the parasitoids perform better than the whiteflies at 

higher temperatures (24–32 °C) for most of the traits tested. 
Similarly, Youngsteadt et al. (2017) compared the changes 
in abundance of whiteflies, predators and parasitoids, and 
reported that parasitoids had higher abundance per  °C urban 
warming compared to whiteflies, while predators show lower 
response to warming compared to parasitoids and whiteflies, 
respectively.

Insecticides have long been applied successfully in 
diverse environments from hot, irrigated desert regions to 
cool temperate regions. Although the toxicity of insecticides 
may be influenced by temperature (Sparks et al. 1983; Boina 
et al. 2009; Glunt et al. 2014), diurnal variations in tem-
perature will still permit insecticide applications to be made 
within temperature ranges relevant to the functionality of 
the compounds. Moreover, compensatory feeding at elevated 
 CO2 levels would increase the consumption of insecticide 
(Coviella and Trumble 2000) and could therefore increase 
the efficacy of insecticides. However, climate change and 
faster population growth of whiteflies may also increase 
insecticide application rates and associated costs of manage-
ment with insecticides (Chen and McCarl 2001; Koleva and 
Schneider 2009). Climate change may also indirectly affect 
the efficacy of insecticides since periods suitable for spray-
ing will likely increase with drier locations and decrease 
where it is wetter (Harrington et al. 2001).

Cultural practices are commonly used as part of an overall 
strategy for whitefly management. Where efficient weather 
forecasting systems are available to farmers, changing plant-
ing date will remain an easy and effective tool to reduce 
pest pressure. However, climatic uncertainties may render 
this practice less useful (especially for small-holder farmers 
because of their limited use of weather information). The 

Table 2  Temperature conditions at which peak performance for selected life history traits of whiteflies was reported

NA not available
a Multiple host plants

Whitefly species Development time 
(°C)

Immature 
survival 
(°C)

Adult 
longevity 
(°C)

Fecundity (°C) Intrinsic rate of 
increase (°C)

Geographic 
location

References

B. tabaci MEAM 1 29  26 20 20 29 China Qiu et al. (2003)
B. tabaci MEAM 1 35 NA 20 25 30 China Yang and Chi (2006)
B. tabaci MED 30 25 17 21 30 France Bonato et al. (2007)
B. tabaci MED 27.5 and  30a 27.5–32.5a NA NA NA Korea Han et al. (2013)
T. vaporariorum 24 NA 18 18 NA China Xie et al. (2011)
T. vaporariorum 26 19 19 22 19 and  22a Colombia Manzano and Len-

teren (2009)
A. takahashi 35 15 15 25 NA China Sengonca and Liu 

(1999)
Parabemisia myri-

cae (Kuwana)
30 25 ± 1  15 ± 1  25 ± 1  NA Turkey Uygun et al. (1993)

Singhiella simplex 
(Singh)

30 15 15 27 27 USA Legaspi et al. (2011)
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greenhouse strategy (physical barrier) is to a large extent 
already in place in the new areas that might be invaded 
by whiteflies, and will continue to be useful especially in 
intensive production systems if well managed and combined 
with other control methods. Phytosanitary measures, such as 
quarantine and the removal of weeds and crop residues, are 
widely used today and will continue to be useful since there 
are no indications that climate change will affect their effec-
tiveness. Although constitutive and induced plant defences 
can be affected by climatic change due to changes in C:N 
ratio, which could in turn affect both synthesis and func-
tioning of defence compounds (Zavala et al. 2013), there 
is insufficient evidence as to how this will influence resist-
ance to whiteflies. Even under current production conditions, 
insect pests and pathogens often develop mechanisms for 
breaking down host resistance. How climate change will 
affect whitefly resistance is unknown, although it will most 
probably be host-whitefly specific. This topic presents an 
important opportunity for additional research.

Conclusion and future prospects

The study reviewed the impact of climate change on white-
flies with the primary goal of identifying important trends 
for biological parameters. Among the new insights from 
our study is that while environmental stress tends to nega-
tively affect life history, the effects differ with tolerance 
of the whiteflies, amount of stress experienced (which is 
often related to habitat characteristics) and the host plant. 
Whiteflies differ in their adaptability and adaptive strate-
gies, and these will influence their eventual response in 
terms of distribution and abundance with climate change. 
With climate change, better adapted species will likely 
experience increased distribution and abundance provided 
their tolerance limits are not exceeded, while species with 
lower tolerance and adaptation limits will suffer reduced 
fitness, which will have overall effects on their distribu-
tion and abundance in space and time. Most methods used 
to control whiteflies will still be effective, especially if 

Table 3  Temperature conditions at which peak performance for selected life history traits of whitefly natural enemies was reported

Whitefly species Develop-
ment time 
(°C)

Immature 
survival 
(°C)

Adult 
longevity 
(°C)

Fecundity (°C) Intrinsic rate of 
increase (°C)

Geographic 
origin

References

Parasitoids
En. formosa 28 22 16 28 28 Germany Enkegaard (1993)
En. formosa 32 NA 15 NA NA USA Qiu et al. (2004)
En. inaron (Walker) 30 25 20 25 25 Iran Malekmohammadi et al. 

(2012)
En. bimaculatus (Heraty 

and Polaszek)
32 26 20 29 29 China Qiu et al. (2006)

En. acaudaleyrodis 
(Hayat)

32 25 20 25 25 Iran Zandi-Sohani and 
Shishehbor (2011)

En. acaudaleyrodis 
(Hayat)

32 25 20 25 25 Iran Zandi-Sohani and 
Shishehbor (2011)

Er. eremicus (Rose & 
Zolnerowich)

32 NA 15 NA NA USA Qiu et al. (2004)

Er. sp. Nr. furuhasii 
(Rose & Zolnerowich)

29 26 20 26 29 China Qui et al. (2007)

Er. mundus (Mercet) 30 25 20 25 30 Iran Zandi-Sohani et al. 
(2009)

Er. mundus (Mercet) 32 NA 15 NA NA Italy Qiu et al. (2004)
Predators
Serangium japonicum 

(Chapin)
32 26 20 26 29 China Yao et al. (2011)

Axinoscymnus cardilo-
bus (Ren and Pang)

29–32 23 17 23 23 China Huang et al. (2008)

A. apioides (Kuznetsov 
and Ren)

29 26 20 23 26 China Zhou et al. (2017)

Clitostethus brachylobus 
(Peng et al.)

29 26 17 26 26 China Deng et al. (2016)

C. arcuatus (Rossi) 30 25 15 20 30 Portugal Mota et al. (2008)
Nephaspis oculatus 

(Blatchley)
33 26 20 26 26 USA Ren et al. (2002)
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complementary methods are combined for maximum effi-
cacy. Changes in climatic suitability modifying the distri-
bution and abundance of whiteflies and the environmental 
suitability for plant viruses will likely affect epidemics 
of viral diseases. Overall, the impacts of climate change 
on whiteflies will show latitudinal or location specificity, 
as reported for other insect species (Deutsch et al. 2008; 
Bebber et al. 2013; Youngsteadt et al. 2017). Although 
reduced climatic suitability and establishment risk of 
whiteflies are predicted for some parts of the tropics, and 
temperature will remain a limiting factor to the distribu-
tion and abundance of whiteflies in temperate regions 
(outside greenhouses), some regions will see population 
increases and whiteflies will still continue to pose a threat 
to crop production (Gamarra et al. 2016a, b, c). However, 
there are uncertainties associated with predicting the 
effects of climate change when considered locally in space 
and in time. Effects of single climatic factors on whiteflies 
species are often not complementary and may be antago-
nistic (Table 1). The study also shows that the influence 
of temperature (in comparison with other environmental 
variables) on whiteflies has been given overwhelming 
attention probably due to its established importance in the 
biology of whiteflies and other insects. Studying the influ-
ence of multiple climatic factors simultaneously (Curnutte 
et al. 2014) is an important further step in elucidating how 
climate change is likely to affect whiteflies. Additionally, 
there is very little information currently available on how 
climate change will affect trophic interactions involving 
whiteflies. The limited research that has been done sug-
gests that climate change impacts may be significant or 
negligible depending on the host, whitefly and factors 
considered (Tripp et al. 1992; Cui et al. 2012; Wang et al. 
2014). More research insights addressing the effect of sin-
gle or multiple factors on trophic interactions of whiteflies 
will significantly contribute to our knowledge of whitefly 
biology and will help in the design of robust future man-
agement guidelines.

Our key message here is that developing effective 
responses to the additional whitefly threat that may result 
from climate change will depend heavily on improving 
understanding of the complex interactions between whitefly 
species, host plants, natural enemies and the components of 
climate change that will affect them in each of the world’s 
major agro-ecological zones. A varied set of control tactics 
for whiteflies and the viruses that they transmit are already 
being applied. The challenge will be working out, through 
research, how to apply this basket of technologies most 
effectively in the dynamic new agricultural environment that 
is emerging as humans continue to modify the world. This is 
a challenge of global significance, but certainly one that can 
be resolved if addressed with appropriate levels of invest-
ment, leading to a more sustainable, food secure future.
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