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Abstract

We use DN A-fingerprinting to estimate the poverty reduction effect of adoption of
improved cassava varieties in Nigeria. We estimate the counterfactual household
income distribution of cassava producers by combining farm-level treatment effects
with a market-level model. Our results suggest that adoption of improved cassava
varieties has led to a 4.6 percentage point reduction in poverty, though this is sensi-
tive to the measurement of adoption status. Therefore, accurate measurement of
adoption is crucial for a more credible estimate of the poverty reduction effect of
adoption. Our analysis also suggests that farmers who are more likely to be adop-
ters are also likely to face higher structural costs. Addressing structural barriers
that make improved technologies less profitable for the poor would therefore be
important to increase the poverty reduction effect of improved cassava varieties.
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1. Introduction

Technological change is critical for agricultural productivity growth and poverty
reduction in developing countries especially in sub-Saharan Africa (SSA) (Gollin
et al., 2002; Alene et al., 2009; Suri, 2011; Zeng et al., 2015). It is widely recognised
that the development and dissemination of improved crop varieties and complemen-
tary agronomic practices are major drivers of smallholder agricultural productivity
growth (Alene et al., 2009; Suri, 2011; Zeng et al., 2015; Kassie et al., 2017; Abdou-
laye et al., 2018). However, empirical evidence on the relationship between agricul-
tural research and poverty reduction suggests that improved agricultural technologies
may not necessarily lead to poverty reduction as the poor are often constrained by
structural barriers that make improved technologies inaccessible and less profitable
for them (Suri, 2011; Zeng et al., 2015; Kassie et al., 2017). Therefore, understanding
how and why farm households adopt improved varieties and their subsequent effects
on productivity and poverty outcomes is important to the design of an effective
pro-poor technology dissemination strategy.

This article estimates the poverty reduction effect of adoption of improved cassava
varieties in Nigeria, the largest producer of cassava in the world. In Nigeria, there has
been substantial investment in the development and dissemination of improved cas-
sava varieties by national and international research and development organizations.
As part of a major long-term crop improvement effort the International Institute of
Tropical Agriculture (IITA) in collaboration with national partners such as National
Roots Crop Research Institute (NRCRI) initiated cassava research in the early 1970s
with a focus on developing varieties that are resistant to major diseases such as cas-
sava mosaic virus disease (CMD) and cassava bacterial blight (CBB). Other breeding
traits included high yield, good root quality, high dry matter, low cyanogens, and
resistance to lodging. These efforts by IITA and its partners led to a successful deploy-
ment of CMD and CBB-resistant cassava varieties in Nigeria (Dixon et al., 2011;
Alene et al., 2012). In addition, Nigeria’s national extension programme under the
National Accelerated Food Production Programme (NAFPP) and the Agricultural
Development Projects (ADPs) invested significantly for disseminating these varieties
to smallholders (Alene et al., 2012).

Despite these major efforts and the importance of cassava for rural livelihood, there
is a lack of comprehensive and rigorous evidence on adoption rates and impacts of
improved cassava varieties on productivity and poverty related outcomes. Much of
the empirical evidence on adoption and impacts has focused on other crops such as
maize (Alene et al., 2012; Zeng et al., 2015; Wossen et al., 2017). In addition, most
studies have focused on productivity effects without assessing the effects on poverty.
However, adoption of improved technologies may lead to productivity growth that
may not necessarily be pro-poor. It is, therefore, important to assess the poverty
reduction effect of adoption beyond establishing causality between adoption and
productivity.

We use unique nationally representative adoption data to measure adoption rates
and to estimate the poverty reduction effect of improved cassava varieties in Nigeria.
We contribute to the existing literature in three main ways. First, we use DNA-finger-
printing to identify varieties grown by farmers as a more reliable measure of adoption
(Rabbi et al., 2015). In the agricultural technology adoption literature, data from
household surveys are used to identify the varieties grown by farmers. However, in
the presence of imperfect seed markets, farmers may not correctly identify the variety
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they grow (whether it is improved or not) due to input market imperfections (e.g. seed
adulteration by dealers) or lack of awareness and technical information on the charac-
teristics of improved varieties (Wossen et al., 2018).> Using DNA-based adoption
data, we document the extent to which measurement error in self-reported adoption
status may bias the poverty reduction effect of adoption. Second, we also use GPS to
measure farm size. In many household surveys, farm sizes are measured by simply
asking farmers to estimate the size of their farm plots. However, self-reported farm
size estimates might be prone to measurement error (Carletto et al., 2013). Conse-
quently, such measurement errors in farm size may affect productivity estimates and
hence the estimated poverty reduction effect of adoption. Third, following Zeng et al.
(2015) and Kassie et al. (2017), we link farm-level treatment effects to a market level
model to measure the aggregate poverty reduction effect of adoption. The rest of the
paper is structured as follows. Section 2 outlines the context and data sources. Sec-
tion 3 describes the empirical strategy. Section 4 discusses main results and section 5
concludes.

2. Context and Data Sources

This study is based on the Cassava Monitoring Survey in Nigeria (CMS) which
was conducted in 2015/16. The CMS project was designed by IITA to assess the
adoption of improved cassava cultivars in Nigeria. To do so, data were collected
from 16 states that together account for more than 80% of the total cassava pro-
duction in Nigeria. These states were grouped into four geopolitical zones. In these
regions, cassava is the main economic enterprise from which rural households
derive most of their income. To collect a nationally representative dataset, we first
obtained the list of Enumeration Areas (EAs) from the National Population Com-
mission (NPC). From each region, 100 local government arcas (LGAs) were
selected using probability proportional to size (PPS) sampling approach. From each
EA, five cassava growing households were randomly selected for interview. This
gave a total of 625 households per region and a total of 2,500 farming households.
From each surveyed houschold, data on socio-economic characteristics as well as
other outcomes of interest such as production, expenditure on food and non-food
items were collected. In addition, from each identified variety at each plot, samples
of cassava leaves were collected for DNA-fingerprinting analysis. Leaf sample col-
lections were done for each unique variety at plot level. A standard tracking system
was implemented to reduce human error of sample mismatch and mix-ups during
the collection of genotypes in the farmers’ field. In particular, a tracking system
with multiple layers was implemented using barcode labels, self-adhesive stickers,
booklet and tablet computers for capturing samples and sample-associated informa-
tion. Duplicate barcodes were also prepared and pasted both on sample collection
tubes and booklets for each sample collected. For each collected sample, DNA was
extracted and genotyped for varietal identification. Varietal identification was done
by comparing varieties in the reference library (variety collections by IITA) with
the genotyped data from farmers’ fields.

2Wossen et al. (2018) documented that misclassification of adoption status can lead to upward/
downward bias as well as to sign reversal effects. A detailed theoretical exposition on how mea-
surement error may bias productivity estimates is presented in Wossen et al. (2018).
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3. Empirical Strategy

Identifying farm-level productivity impacts of adoption of improved cassava varieties
is non-trivial due to selection bias. Identifying impacts require controlling for both
observable and unobservable characteristics through random assignment of adoption
status. We employ an instrumental variable (IV) regression approach that takes
account of both observed and unobserved heterogeneities between adopters and non-
adopters. Beyond farm-level productivity effects, technical change often affects mar-
ket level outcomes such as poverty. Estimating such market level outcomes, however,
requires a hybrid approach that combines some estimation of farm level productivity
impacts with market level outcomes such as price changes (Zeng et al., 2015). We
combine farm level treatment effects with a market-level model to estimate the aggre-
gate poverty reduction effect of adoption of improved cassava varieties in Nigeria.

To estimate farm-level treatment effects, we utilise the following empirical specifica-
tion. Let Y; be cassava yield of plot i and T; be the self-reported adoption status. 7
takes a value of one if the farmer reports the use of an improved variety, and zero
otherwise. The empirical relationship between productivity and adoption is then spec-
ified as follows:

Y=o+ 0Ti + 90X, + oW, + U; (1)

X includes a vector of household and plot level controls, W), captures village-level
fixed effects to control for village-level general conditions (such as weather, market
and prices) and 6 measures the productivity effect of technology adoption (based on
self-reported adoption status). In the above specification, the treatment (the decision
to adopt improved cassava varieties) is endogenous as farmers self-select into adop-
tion based on both observable and unobservable characteristics. The adoption deci-
sion of farmers can be modeled in the following way:

T =7(X,"2) = Vi (2)

T;* measures the latent propensity to adopt improved cassava varieties. In the above
specification, 7; = 1 if 77 > 0. Z is a vector of instruments and X is a vector of exoge-
nous covariates affecting adoption decision. V;is an idiosyncratic error term that mea-
sures the unobserved heterogeneity in the propensity to adopt improved cassava
varieties. The equation implies that farmers self-select into adoption based on unob-
served intrinsic characteristics, such as poor/better farming skills and management
abilities, which are likely to be related to productivity levels. As such, causal identifi-
cation of adoption impacts requires an instrument that satisfies the orthogonality con-
dition (a variable that is strongly correlated with adoption decision but that does not
directly affect productivity). Following Krishnan and Patnam (2013) and Ma and
Abdulai (2016), we use neighbours and friends’ adoption decisions as an identifying
instrument.’ However, adoption status can be misclassified and such misclassification
is non-classical and endogenous. To overcome such biases, we re-estimate our empiri-
cal specification using DNA-fingerprinted adoption status (7Y) instead of T;.

3We checked the relevance of our instruments, that is, to test whether the instruments are corre-
lated with the adoption status. The results (first stage regression) are reported in the online sup-
plementary material. The coefficients on both the instruments are statistically significant at 1%,
suggesting that they are relevant IVs.

© 2018 The Agricultural Economics Society



Poverty Reduction Effects of Agricultural Technology Adoption 5

Y=o+ 0T + 90X, + oW, + U, 3)

The size and direction of 67 and 0 determines the bias caused by endogenous
misreporting of adoption status (0% = 6 no bias, 6> 0 downward bias and 0 < 0
upward bias). Given the nature of the endogenous variable, we implement a two-
stage procedure that explicitly takes into account the binary nature of the endoge-
nous treatment variable, first using a probit model to predict the probability of
adoption, then using the predicted probabilities from the first stage as an identify-
ing instrument in the productivity equation in the second stage (Wooldridge,
2010).*

However, the productivity gain from adoption (07 and 0) is more likely to be
heterogeneous conditional on adopters’ observed and unobserved characteristics. To
capture this heterogeneity, we extend the above average treatment effect model and
estimate marginal treatment effects (MTEs) (Heckman and Vytlacil, 2005; Carneiro
et al., 2017). As explained above, let the observed productivity level (Y;) of adopters
and non-adopters be Y; and Y, respectively. The potential outcome is then specified
as follows:

Y=o +09X + oW+ U, (4)

Yo =09+ 90X+ oW+ Uy (5)

Given the above potential outcome framework and the adoption decision model in
equation (2), heterogenous expected gains conditional to observed and unobserved
characteristics of farmers can be specified as follows:

Y,=TY,+(1-T)Yy= Yo+ T(Y, — Y)p) (6)
Which is equivalent to:
Y, = eo(Xi) + T[el(X,) — Ho(Xj) + Uy — U()j} + Uy (7)

This specification clearly shows that the return from adoption varies across farmers
based on observable characteristics ([0, (X) — 0y(X)]) and idiosyncratic individual-spe-
cific gains (Uy; — U,) (see, Heckman and Vytlacil, 2005, 2007; Carneiro et al., 2017).°

The above framework provides consistent treatment effects at the farm level. How-
ever, estimating market-level impacts (poverty reduction) requires including indirect
effects by taking into account the different pathways through which adoption may
affect welfare of cassava producers. Generally, there are three pathways through
which adoption may affect poverty: (i) effects through output price changes due to
increased sp from adoption, affecting net-food buyers; (ii) effects through farm profits,
where adopters may generate higher profits: (iii) effects through rural wages as a gen-
eral equilibrium effect through wage adjustment. We focus on the first two cases,

“The same empirical approach was used to estimate treatment effects for cost of production.

SWe estimated equation (7) using both self-reported and DNA-fingerprinted adoption status to
recover MTEs with and without measurement error, respectively. MTEs were estimated using
local instrumental variables (LIV-semiparamteric model). The LIV approach, allows for more
flexible functions for the MTE and imposes no distributional assumptions on the unobservables
of the model.
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ignoring the effect of wage adjustments as most farmers use family labour for cassava
production.® We estimate the aggregate effects of adoption using the following steps:
(1), estimate farm-level treatment effects (yield and cost changes) due to adoption; (ii)
estimate income effects (producer and consumer surplus changes) based on yield and
cost treatment effects and allocating the resulting income changes to appropriate
households; (iii) estimate the counterfactual income distribution based on changes in
producer and consumer surplus and calculating impacts that can be attributed to
adoption. To allocate adoption induced income changes to farm households, we first
identify the type of market (open/closed) and the market position of a given farmer
(net buyer/seller). Given that cassava is a non-tradable food staple, we use a closed
economy model to estimate the income changes following adoption.

In the closed economy case, local supply changes will necessarily affect local
market prices. To capture aggregate benefits of adoption through aggregation of
farm-level effects we use the economic surplus model (ESM, hereafter). The ESM
captures adoption induced supply responses (per unit cost reductions) through a
simple shift in the supply function of producers (Alston et al., 1995). Estimating
the aggregate poverty reduction effect of adoption in ESM requires an estimate of
the counterfactual price and quantity (P and Q), which are not observable but
can be calculated algebraically based on observed price (P°”), observed produc-
tion (Q°”), extent of supply shift (cost reduction per unit of output, commonly
referred as the k-shift parameter), the size of supply elasticity (¢) and demand
elasticity () (Zeng et al., 2015; Kassie et al., 2017). The k-shift parameter mea-
sures adoption induced cost reduction per unit of output (the extent of outward
shift in the supply curve). Following Alston et al. (1995) and Zeng et al. (2015)
the k-shift parameter is calculated as follows:

k:(ﬂ— b )xn (8)

¢ 1+0,

where 0, and 0, are the treatment effects for yield and cost of production, respectively.
7 measures current adoption rate of improved cassava varieties. Using the estimated
k-shift parameter, P°**, 0°”, ¢ and 5 the counterfactual price level (P°") that would
have existed without adoption of improved cassava varieties is derived as follows

(Zeng et al., 2015):
, ‘ +n
PL[ _ P()[)A ¢ 9
(8 +n- k8> ®)

Counterfactual production level (Q) is calculatedy subtracting aggregate produc-
tion gains of adoption from observed cassava production (Q°”). Once the k-shift
parameter, O and P’ are determined, adoption induced changes in producer and
consumer surplus can be calculated following Alston et al. (1995) as follows:

APS = PQ% (k — Z)(1 + 0.5Zn) (10)

ACS = PQ“Z(1 +0.5Zn) (11)

SCapturing wage adjustments is also beyond the scope of this paper. However, as a robustness
check, we followed the approach of Kassie ef al. (2017) and calculated effects using empirically
estimated poverty elasticities.
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where Z equals the proportional reduction of market price (P — P°**)/P*’). Follow-
ing Zeng et al. (2015), we allocate producer and consumer surplus changes to appro-
priate farm households to measure welfare changes due to adoption. The estimated
producer surplus changes are allocated to individual households as adoption and
price effects. In particular, producer surplus changes associated with lower market
prices (i.e. income losses) among net-sellers are allocated as price effects using their
sales quantities from total production as a weight. Adoption effects are then calcu-
lated as the difference between total producer surplus and price effect. Similarly, con-
sumer surplus related changes are allocated to households using their expenditure on
cassava (both purchased and home consumption from own production) as a weight.

3.1. Descriptive statistics

3.1.1. Adoption rate of improved cassava varieties

Previous studies (Zeng et al., 2015; Kassie et al., 2017) used household survey data to
measure adoption rates with the assumption that farmers’ self-reported data correctly
reflect their adoption status. We use both DNA-fingerprinted and self-reported adop-
tion data to measure adoption rates. Figure 1 shows adoption rates based on DNA-
fingerprinted and self-reported adoption data as well as misclassification rates from
the household survey at the plot level. The household survey result shows 54% adop-
tion rate while the DNA-fingerprinting result shows about 68% adoption rate at the
plot level. In addition, the misclassification rates (both false negatives and positives)
are non-trivial, with farmers identifying improved varieties as landraces on 25% of
the plots, and reporting landraces as improved varieties on 10% of the plots.

To avoid the bias associated with misclassification, we used adoption status from
DNA-fingerprinted data to measure productivity gain and poverty reduction effect
for our main analysis.” We also estimate effects using self-reported adoption rate from
the household survey to show the bias associated with misclassification.

80
70
60
50
40
30
20

Adoption rate (%)

Self-reported DN False negative False positive

Figure 1. Adoption rate of improved varieties

"Wossen et al. (2018) provided a detailed treatment of the issue of misclassification in adoption
studies.
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3.1.2. Distribution of yield

Yield (output per ha) is calculated as the ratio of total output to GPS-measured plot
size.® In our setting, GPS measures are taken for all cassava plots from all surveyed
households. However, our production data are based on self-reported values.” Pro-
duction data were collected using local measurement units as non-standard produc-
tion units are used by the majority. Figure 2 shows that average cassava yield for our
sample is reported as 14.7 t/ha, with, adopters reporting significantly higher yields
than non-adopters irrespective of the way adoption status is measured.

3.1.3. Other socio-economic characteristics

Table 1 presents key socio-economic and plot-level variables used in our regression analy-
sis. Household level controls include: age, household size, education, membership of dif-
ferent social groups and ownership of livestock. Plot level controls include: soil fertility
indicators, plot management and the use of agricultural inputs. We hypothesise that both
household level and plot level characteristics affect farmers’ decision to adopt improved
cassava varieties. As shown in Table 1 adopters and non-adopters tend to be significantly
different in most of the socio-economic and plot level variables. Finally, our instruments,
friend is an adopter and neighbour is an adopter are measured based on farmers’ self-
reports. When disaggregated by adoption status, 59% of adopter’s friends and 67% of
adopter’s neighbours are adopters while the adoption level among neighbours and friends
of non-adopters is quite low. These differences are also statistically significant at 1%
significance level, suggesting that our instruments are sensible.

4. Results
4.1. Average treatment effects

Table 2 presents productivity and cost treatment effects at the farm level. Results are
presented for self-reported and DNA-fingerprinted adoption status, respectively. The

18
16

14
12
0
8
6
4
2

Adopters Non-adopters Adopters Non-adopters

Yield (t/ha)

[=}

Average self-reported DNA

Figure 2. Cassava yield based on adoption status (DNA and self-reported)

8Comparison of GPS measured and self-reported plot size suggests that farmers overestimate
the size of smaller plots and underestimate the size of bigger plots.

“Undertaking a full-crop cut to measure production is both costly and effectively impossible,
since the crop is continuously harvested, though we recognise that self-reported values can also
be prone to errors.
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Table 2

Farm level yield and cost treatment effects

Yield Cost

Self-reported DNA-based Self-reported DNA-based
adoption status  adoption status  adoption status  adoption status

Adoption 0.478%** 0.584%%* 0.287%* 0.312*
(0.109) (0.122) (0.142) (0.163)

Other controls Yes Yes Yes Yes

Location dummies Yes Yes Yes Yes

Input prices No No Yes Yes

N 5,180 5,180 5,180 5,180

Notes: Standard errors clustered at the enumeration area-level are reported in parentheses. ***,
** and * refer to significance at 1%, 5% and 10% levels, respectively. Other controls include
use of fertiliser, herbicide and pesticide, plot management, intercropping, soil fertility status,
ownership of mobile phones, access to extension, access to credit, membership in cassava grow-
ers’ association, membership in informal saving and credit institutions, membership in coopera-
tives, livestock size in TLU, age, education, household size, and sex. Location dummies: North,
South-West South-East and South-South.

results in Table 2 suggest that adoption increases yield by 60%-79% depending on
the way adoption status is measured.'® Our main result also shows that adoption has
a positive and statistically significant effect on the cost of production.''

4.2. Marginal treatment effects

Marginal treatment effects are presented to show heterogeneity in returns to adoption.
It does so by evaluating effects over the common support of the propensity score. If
there is no sufficient overlap in the common support, MTEs will not reliably be
estimated. Figure 3 shows the distribution of the propensity scores for adopters and
non-adopters.

Results show that there is a significant overlap over the common support and hence
MTEs can be recovered reliably. Figure 4 presents marginal treatment effects for yield
using DNA-fingerprinted adoption status (mean and 95% confidence interval
obtained through 1,000 bootstrap replications). The results suggest significant hetero-
geneity in returns to adoption.

The slope of MTEs over U, (the unobserved resistance to adopt improved cassava
varieties) shows some interesting features. The estimated MTE is generally a

'0The correct interpretation of log-linear estimates should be: 100 x (exp(coef) — 1). In most
empirical applications of semi-log models, researchers often interpret the size of parameter esti-
mates directly. However, this interpretation is approximately valid when the true parameter
estimates are between —0.1 and 0.1. Failure to adjust parameter estimates in a log-linear specifi-
cation will bias the estimated magnitude of outcome variables of interest (such as productivity).
For example, in Table 2, the treatment effect of 0.478 should be interpreted as adoption
increases yield by 60% instead of 47.8% and this has a huge implication on the poverty reduc-
tion impact of adoption.

"Results with the full list of controls are reported in the online supplementary material.
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Non-adopters Adopters

Density

0 5 1 0 5 1
Propensity score by adoption status

Figure 3. Distribution of propensity scores over the common support region

Estimated Marginal Treatment Effects

Yield MTE

Ut

Figure 4. Distribution of yield marginal treatment effects (MTEs) based on DNA-based
adoption status

decreasing function of U,, where farmers with lower values of U, are those who are
more likely to adopt improved cassava varieties, suggesting that farmers self-select
into adoption based on their comparative advantage, consistent with Suri (2011). As
shown in the online Appendix S1, MTE results using self-reported adoption status
show a similar decreasing relationship with U,. The distribution of cost MTEs (Fig-
ure 5) suggests that farmers with the highest propensity to adoption face higher costs
of production.'* Reducing structural and technical barriers that make adoption
expensive for these groups of farmers is, therefore, important to maximise the benefits
from adoption.

>The MTE curve for cost of production based on self-reported data is quite similar to Figure 5
(see online Appendix S1).
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Estimated Marginal Treatment Effects

Cost MTE

0 2 4 6 8 1
Ut

Figure 5. Distribution of cost marginal treatment effects (MTEs) based on DNA-fingerprinted
adoption status

4.3. Impact of adoption on poverty

We follow the approach of Zeng et al. (2015) and use our yield and cost treatment
effects along with supply and demand elasticities from the literature to estimate the
poverty reduction effect of adoption. We used a demand elasticity of 0.46 (Tsegai and
Kormawa, 2002) and a supply elasticity of 0.7 (Obayelu and Ebute, 2016). The aver-
age 2009-2014 market price (P°**) per kilogram of cassava was USS$ 0.14."* The corre-
sponding total production of cassava for 2009-2014 was 46.5 million metric tons.
Given these data, the k-shift is computed as a 51% cost reduction per kilogram of cas-
sava which leads to a counterfactual price (P") of US$ 0.20. We then calculate the
counterfactual per-capita total expenditure by subtracting household-specific con-
sumer and producer surplus changes from observed per-capita expenditure.'* Poverty
impacts are then estimated based on the differences between observed and counterfac-
tual per-capita total expenditure distributions (Figure 6).

To enable comparison between counterfactual and observed per capita expenditure
levels, we deflated nominal expenditure values to real values using the national con-
sumer price index. In our case, the incidence of poverty was calculated using the inter-
national poverty line of 1.9 USD per day, evaluated at purchasing power parity
(PPP). The distribution of the observed per capita expenditure always lies to the right
of the counterfactual per capita expenditure, suggesting a reduction in poverty due to
adoption. As shown in Figure 6, adoption has led to a 4.6 percentage point poverty
reduction implying that 7.5% of the rural poor cassava producers have escaped pov-
erty in the current year due to adoption of improved cassava varieties.'> Such poverty

3This price is calculated as the average price of cassava from 2009 to 2014 from FAOSTAT.

“We used per-capita expenditure instead of income as we do not have complete income mea-
sures in our survey.

5The counterfactual poverty headcount ratio and poverty impact are 0.615 and 0.046, respec-
tively. Thus, the percentage of the originally poor who have escaped poverty is 0.046/
0.615 = 7.5%.
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Figure 6. Distribution of observed and counterfactual per capita expenditure

reduction suggests about 1.62 million individuals per year have escaped poverty in
Nigeria due to adoption of improved cassava varieties.'®

4.4. Robustness checks

4.4.1. Robustness to the measurement of adoption status

As a robustness check, we also estimated the poverty reduction effect of adoption
using self-reported adoption status from the household survey. As implicit in our
farm-level adoption effects estimates, the aggregate poverty reduction effect is smaller
when using self-reported adoption status from the household survey. Using self-
reported adoption status, the poverty reduction impact of adoption becomes only
3.1% points, translating to 1.1 million individuals per year. This suggests that more
precise estimates of adoption status are crucial to prioritise interventions and funding
research in the agricultural sector.

4.4.2. Considering other mechanisms — other considerations

In our main analysis, both productivity and price mechanisms were captured consis-
tently by linking farm-level treatment effects with the economic surplus model. How-
ever, as pointed out by Kassie e al. (2017), adoption-induced productivity growth
may provide additional income to poor households by creating marketing and job
opportunities along the value chain. Therefore, we follow the approach of Alene ez al.
(2009) and Kassie et al. (2017) and measure a poverty reduction effect of adoption by
using an empirically estimed poverty elasticity with respect to agricultural productiv-
ity growth. In this framework, the poverty reduction effect of adoption is estimated as
follows:

!This is calculated as 0.075 x number of cassava producers (i.e. according to FAOSTAT the
total area under cassava that corresponds to our production and price value is about 5.2 million
ha. With average cassava area of 1.09 ha, the number of cassava producers becomes about
4.7 million). Given average family size of 4.6, the total number of individuals becomes
21.6 million).
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CS+PS
AP”(/WXSP)XN (12)

where AP, and N denote the number of people that escaped poverty due to adoption
and the number of poor people in the country, respectively. CS and PS are consumer
and producer surplus, respectively. AgGDP is agricultural GDP and ¢, is the elasticity
of poverty to agricultural productivity growth. According to the 2015 Nigerian
Bureau of Statistics (NBS), the agricultural GDP of the country is US$ 8.5 billion
(21% of the total GDP). In addition, Alene ez al. (2009) and Thirtle ez al. (2003) sug-
gested a 0.72 elasticity of poverty to agricultural productivity growth for Africa.
Using our results from the economic surplus model and ¢, of 0.72, the number of
people lifted out of poverty due to adoption is estimated to be 2 million people.

5. Conclusions

In this article, we examined the key research question: Does adoption of improved
cassava varieties have an effect on poverty? The poverty reduction effect of adoption
of improved cassava varieties was estimated using DNA-fingerprinted adoption data.
Using DNA-based adoption status, we show that 1.62 million individuals have been
lifted out of poverty due to adoption of improved cassava varieties. Moreover, our
results suggest that this estimate is sensitive to the measurement of adoption status.
Therefore, proper measurement of adoption status is crucial for estimating the pov-
erty reduction effect of technology adoption. Further, we found that adoption of
improved cassava varieties has a heterogeneous impact. We found that farmers self-
select adoption based on their comparative advantage: those with the highest yield
gains have the highest propensity to adopt. However, farmers who are more likely to
be adopters are also likely to face higher input costs. Addressing structural and techni-
cal barriers that make adoption expensive for these groups of farmers is, therefore,
important to maximise the benefits from adoption.

Supporting Information

Additional supporting information may be found online in the Supporting Informa-
tion section at the end of the article.

Appendix S1. Figure S. (1) Map of study area; (5) Distribution of yield MTEs based
on self-reported adoption status; (6a) MTE’s based on polynomial normal model
using self-reported adoption status; (6b) MTE’s based on polynomial normal model
using DNA-fingerprinted adoption status; (7) Relationship between self-reported and
GPS measured area. Table S: (2) First stage regression results; (3) Productivity esti-
mates; (4) Cost estimates
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