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Abstract  

Using plot level panel data and multinomial endogenous switching regression, this paper 

analyzes the adoption and welfare impacts of multiple agricultural technologies in eastern 
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Zambia. We adapt a multinomial endogenous switching/treatment effect regression 

framework to correct for selection bias and endogeneity originating from both observed and 

unobserved heterogeneity. Results indicate that joint adoption of multiple agricultural 

technologies had greater impacts on crop yields, household incomes, and poverty than the 

adoption of individual components of the technology package. Our findings suggest that 

efforts aimed at raising household incomes and reducing poverty should focus on promoting 

the adoption of multiple agricultural technologies through provision of improved support 

services such as extension and input supply. 
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1. Introduction 

Improved agricultural technologies are critical for increasing agricultural productivity, 

household income, and food security and for reducing poverty (Diao et al., 2010; Kassie et 

al., 2018; Zeng et al., 2017). However, in many developing countries including Zambia, 

adoption of multiple agricultural technologies such as a combination of improved maize 
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varieties and conservation agriculture practices remains low (Abdulai, 2016; Arslan et al., 

2013). In Sub-Saharan Africa, low crop yields and high levels of food insecurity and poverty 

are explained by low adoption of new technologies, climate change
1
, pests and diseases, and 

low soil fertility (CSO, 2016; Fisher et al., 2015; Jain, 2007; Kassie et al., 2015). 

Maize is the main staple food and cash crop grown in Zambia. It is estimated that over 

55% of the daily calorie intake is derived from maize, with an average consumption of about 

85-140 kg per year (Sitko et al., 2011). Therefore, increasing maize yields through increased 

adoption of improved technologies is critical for food security and poverty reduction in the 

country. In this regard, national and international maize research investments have led to the 

development and dissemination of several improved maize varieties (Smale and Mason, 

2014). Use of improved maize varieties (IMVs), especially drought tolerant varieties, acts as 

an adaptation strategy against climate change (Fisher et al., 2015) leading to higher and more 

stable yields and incomes (Manda et al., 2016; Ng’ombe et al., 2017). The use of 

conservation agriculture practices (CAPs) leads to long-term productivity and environmental 

benefits—reducing soil erosion, nutrient depletion, off-site sedimentation, and conserving soil 

moisture—and reducing labor and draft power use (Jaleta et al., 2016). To harness these 

multiple benefits of CAPs in Zambia, different CAPs policy programs have been pursued by 

the Zambian Ministry of Agriculture (e.g., NAIP, 2014) and developmental organizations. 

Development programs aimed at increasing agricultural productivity and incomes 

introduce multiple interrelated agricultural technologies (MATs). However, there is little 

rigorous empirical evidence on the adoption and impacts of MATs on crop yields, household 

incomes,
2
 and poverty. Previous studies have focused on impact assessment of a single 

                                                           
1 Most parts of Zambia experienced extreme droughts when crops were at critical (e.g., flowering) stage in 2014/2015 and 2015/2016 

growing seasons. 

2 It is the summation of the total net value of crop and livestock production, off-farm, remittance, and other sources of income. 
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technology like conservation agriculture (e.g., Abdulai, 2016), minimum tillage (e.g., Jaleta 

et al., 2016) and improved maize varieties (e.g., Bezu et al., 2014; Zeng et al., 2015, 2017). 

Yet farmers rarely use a single agricultural technology but rather a combination of 

complementary technologies adopted in a sequential manner over time (Aldana et al., 2011; 

Leathers and Smale, 1991), which needs to be accounted for in adoption and impact studies. 

Past studies that have assessed the impacts of MATs also used cross-sectional data
3
 (e.g., 

Kassie et al., 2015; Manda et al., 2016; Ng’ombe et al., 2017; Teklewold et al., 2013). 

Moreover, there is little evidence on the poverty impacts of MATs using panel data.  

The contribution of this paper to the empirical literature is threefold. First, we analyze 

and compare the effects of adoption of single and multiple agricultural technologies on maize 

yields, income, and poverty. To the best of our knowledge, this has not been done in Zambia 

or elsewhere. Second, we adapt multinomial endogenous switching regressions (MESR) to a 

unique and more recent (2012 and 2015) plot level panel data to account for selection bias 

and endogeneity originating from observed and unobserved
4
 heterogeneity. We combine a 

panel data estimator with MESR by estimating pooled ordinary least squares (OLS) and 

selection models using the Mundlak (1978) approach. We also extend application of 

multinomial endogenous treatment effects to analyze impacts of MATs
5
 on poverty. Finally, 

examining the role of MATs on welfare outcomes is of great significance to policy makers in 

southern Africa where climate change is increasingly threatening food security and increased 

                                                           
3 An exception is Arslan et al. (2015), but they used old (2004 and 2008) data compared to more recent (2012 and 2015) data that we used. 

Additionally, they examined individual technology adoptions. 

4 We use ―unobserved‖ referring to factors that are measurable, but we have no data on (e.g., soil fertility and soil temperature) and 

―unobservable‖ referring to factors that are challenging to measure (e.g., farmer’s motivation,  managerial skills, etc.). Note that the two are 

used interchangeably. 

5 In this paper, we define MATs as a combination of conservation agriculture practices—minimum tillage, crop residue retention and maize-

legume rotations (Ng’ombe et al., 2017)—and improved maize varieties—both hybrids and open pollinated varieties. 
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adoption of improved and climate-smart agricultural technologies is critical for enhancing 

farm productivity, food security, and poverty reduction.  

The rest of the paper is organized as follows. Section 2 outlines the conceptual 

framework and econometric procedure, whereas section 3 presents and discusses the data 

used in this study. The results are presented and discussed in section 4 and the last section 

draws conclusions and implications for policy. 

2. Conceptual framework and econometric estimation 

This section outlines the conceptual framework and econometric estimation strategy used 

in the paper. We first present an overview of the methods, followed by a detailed econometric 

estimation strategy. Following Deb and Trivedi (2006) and Kassie et al. (2015, 2018), 

impacts of multiple agricultural technologies on maize yields, maize income, household 

income and poverty is modeled using multinomial endogenous switching regressions 

(MESR) and multinomial endogenous treatment effects (METE). However, these approaches 

would give inconsistent estimates if selection bias originating from observed and unobserved 

heterogeneity is not addressed. Farmers may endogenously self-select and decisions are likely 

to be influenced by unobserved factors that may be correlated with outcome variables.  

Selection bias is a key challenge in adoption and impact assessment studies based on 

non-randomized experimental data. Methodologically, most studies (e.g., Kassie et al., 2011) 

have generally used propensity score matching (PSM) in impact evaluation when observable 

selection bias occurs. However, PSM approach cannot correct selection bias from unobserved 

factors (Abdulai, 2016; Jaleta et al., 2016). Unlike PSM, MESR and METE models employ a 

selection correction method by computing an inverse Mills ratio using the theory of truncated 

normal distribution and latent factor structure, respectively, to correct this bias (Bourguignon 

et al., 2007).  
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The endogenous switching regression (ESR) framework is modeled simultaneously in 

two stages. In the first stage, farmer’s choice of alternative technologies (see Table 1) is 

estimated using a multinomial logit selection (MNLS) model accounting for unobserved 

heterogeneity. The inverse Mills ratios (IMRs) are calculated from the estimated probabilities 

in the MNLS model. In the second stage, impacts of each combination of multiple 

agricultural technologies are evaluated using OLS with IMRs as additional covariates in order 

to account for selection bias from time-varying unobserved heterogeneity. Other empirical 

studies (e.g., Di Falco, 2014; Kassie et al. 2015) have also applied ESR in impact evaluation.   

2.1.  Multinomial logit selection model  

It is conceptualized that the decision to adopt a combination of multiple agricultural 

technologies (MATs) is modeled in a random utility framework. Following Kassie et al. 

(2015, 2018), consider the latent model (    
 ) below which describes the  th farmer’s 

behavior in adopting MATs   (       ) at time   over any alternative MATs combination, 

 :  

    
            ̅         with    {

         
         (    

 )          

                        
          

         (    )
            

   for all 

                                                                                                                                                           

                                                                                                                                                  

(1)                                                                                                      

where      is a vector of observed exogenous covariates that represents household and farm-

level characteristics—institutional support services, household assets, demographics, district 

dummies, plot characteristics, geographical variables and weather shocks—and   and   are 

vectors of parameters to be estimated, and      is the random error term.  
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Estimation of the MNLS model could be inconsistent due to correlation of unobserved 

factors with explanatory variables. To address this, we follow Mundlak (1978) and 

Wooldridge (2010) approach where the means ( ̅  ) of all time-varying covariates are 

included as additional covariates in the MNLS model. Unlike the adoption decision which is 

observable, utility derived from adoption of MATs is unobservable. Therefore, Eq. (1) entails 

that the  th farmer will adopt a combination of MATs   to maximize expected benefits if the 

technology provides greater utility than an alternative combination  ,    ; e.g., if  

            (    
      

 )   , assuming that      are independent and identically 

Gumbel distributed (Bourguignon et al., 2007). As shown by Mc-Fadden (1973), the 

probability that a farmer   at time   will choose technology   can be expressed as MNLS 

model with: 

       (           )  
   (          ̅  )

∑    (          ̅  )
 
   

                                                              (2) 

Thus, the MNLS model in Eq. (2) is estimated using mlogit command in Stata Statistical 

Software (STATA 14) and the results are presented in section 4.1. 

2.2. Multinomial endogenous switching regression (MESR)  

In the second stage of MESR, the relationship between the welfare outcome variables 

and a set of explanatory variables ( ) is estimated for each technology choice e.g., 

IMV0CAPs0,     (non–adoption as a reference category); conservation agriculture 

(IMV0CAPs1),     ; improved maize varieties (IMV1CAPs0),    ; and both improved 

maize varieties and conservation agriculture (IMV1CAPs1),     (Table 1). The welfare 

outcome equation for each possible regime ( ) is given as: 
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{

                            ̅                
                                        

                           ̅                 
                                                 (3)               

where        are the welfare outcome variables of the  th farmer in regime   at time   and the 

error terms (      ) are distributed with    (    |   )    and      (    |   )    
 .        

are observed if only one of possible adoption combinations is used.   

We added the means of all time-varying variables ( ̅) in Eq. (3) as additional regressors 

in order to get consistent estimates. This approach can minimize the problem of unobserved 

heterogeneity (Mundlak, 1978; Wooldridge, 2010). The error term (    ) is comprised of 

unobserved individual effects (  ) and a random error term (   ). Therefore, OLS estimates in 

Eq. (3) will be biased if        and        are not independent. A consistent estimation of    

and    requires inclusion of the selection correction terms of the alternative choices in Eq. 

(3). In the multinomial choice setting, there are j-1 selection correction terms, one for each 

alternative adoption combinations. Following Di Falco (2014) and Kassie et al. (2015, 2018), 

the second stage of MESR with consistent estimates is specified as follows: 

{
                              ̂        ̅               

                                        

                             ̂        ̅                 
                                 (4)                    

where      is the error term with an expected value of zero,   is covariance between         

and        ,  ̂    is the inverse Mills ratio computed from estimated probabilities in Eq. (2) as 

follows:  ̂    ∑   
 
   [

 ̂      ( ̂  )

   ̂  
    ( ̂   )]. At this point   is the correlation between  

       and       . Standard errors in Eq. (4) are bootstrapped to account for the 

heteroscedasticity arising from the generated regressors due to the two stage estimation 

procedure. 
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A fixed effects model is estimated to control for potential endogeneity due to omitted 

variables including selection bias. Thus, time-invariant variables such as education of 

household head, district dummies, and geographical variables (e.g., plot distance to 

homestead) are dropped from the models. Time-invariant household characteristics which are 

unobserved may be correlated with both adoption of multiple agricultural technologies 

(MATs) and our welfare indicators. In this specification, unobserved effects are removed 

from the model by taking the panel level averages of explanatory variables. Other sources of 

potential endogeneity may come from unobserved shocks such as extreme weather events and 

death in the family. These shocks may influence adoption of MATs as well as household’s 

welfare status. We included rainfall index to account for major shocks related to weather. 

However, we cannot absolutely claim to have accounted for all unobserved factors using 

observational data.  

It is critical for the   variables in the multinomial logit selection (MNLS) model to 

contain at least a selection instrument in addition to those automatically generated by the non-

linearity of the selection model of adoption for Eq. (4) to be identified (Di Falco, 2014; 

Kassie, et al., 2015). Instrumental variables are included in the MNLS model but they are 

excluded from the outcome equation (Eq. 4). To meet this exclusion restriction, we used the 

following variables: distance to main market, distance to cooperative office, number of 

contacts with extension agents, information on farm technologies, and group membership. In 

the study area, farmers usually buy inputs (e.g., seeds, fertilizers and herbicides) either 

through a cooperative in the village of residence or from a village main market. Furthermore, 

agricultural extension officers provide crucial information on agricultural technologies. 

Hence, farmers can only adopt modern technologies if they either know their inherent 

characteristics or potential benefits (Adegbola and Gardebroek, 2007; Zeng et al., 2017) 
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through early experience (Aldana et al., 2011; Leathers and Smale, 1991). Hence, these 

variables may not directly influence maize yields and household income except through 

adoption decision (for more, see section B of the online appendix).  

We establish admissibility of these instruments by performing a simple falsification test 

(Di Falco et al. 2011) and correlation analysis. Results confirm that selection instruments are 

valid as they jointly affect adoption decision (see Table B1 in the online appendix) but not 

welfare outcome variables such as maize yields and real
6
 household income (see Tables 

B2A–B2C in the online appendix). Many other empirical studies (e.g., Abdulai, 2016; Kassie, 

et al., 2015) have used similar variables in impact evaluation as instruments.  

2.3. Estimation of average treatment effects on the treated  

The multinomial endogenous switching regressions (MESR) framework mentioned 

above is used to estimate average treatment effects on the treated (ATT). We compared 

expected values of outcomes of adopters and non-adopters of multiple agricultural 

technologies in actual and counterfactual scenarios—given by equations (5a) and (5b), 

respectively.  

Adopters with adoption (actual), 

 (    |             ̅   ̂   )             ̅     ̂                                                                (5a) 

Adopters had they decided not to adopt (counterfactual), 

 (    |             ̅   ̂   )             ̅     ̂                                                             (5b) 

Eq. (5b) defines the value of outcome variable for adopters which would have been obtained 

if the coefficients on their characteristics (    ,   ̅  and  ̂   ) had been the same as the 

coefficients on the characteristics of the non-adopters (Kassie et al., 2018). 

                                                           
6 The nominal income was adjusted by consumer price index for 2012 (113.4) and 2015 (130.8) to account for inflation. 
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After estimating MESR i.e., Eq. (4), we use it to predict the actual (Eq. (5a)) and 

counterfactual (Eq. (5b)) expected values of the welfare outcome for a household that 

adopted technology  , in order to calculate ATT.  Following Kassie et al. (2015), we calculate 

ATT
7
 by taking the difference between Eq. (5a) and Eq. (5b) as: 

     (    |             ̅   ̂   )    (    |             ̅   ̂   ) 

             (     )    ̅ (     )   ̂   (     )                                                             (6) 

The expected change in the mean outcome variable if adopters had similar characteristics and 

resources to non-adopters is captured by the first term (    ) on the right-hand side of Eq. (6). 

The third term ( ̂   ) on the right hand side of the Eq. (6) along with the Mundlak approach 

(  ̅ ) corrects selection bias and endogeneity originating from unobserved heterogeneity.  

2.4. Modeling the impacts of adopting multiple agricultural technologies (MATs) on poverty 

To model the effects of adopting MATs on poverty, we estimate multinomial 

endogenous treatment effects (METE), which corresponds to Eq. (7) in this section. METE 

was used because it can be extended to model binary outcomes as opposed to multinomial 

endogenous switching regression (MESR) which only considers continuous outcomes. Here, 

poverty status is measured using Foster-Greer-Thorbecke poverty indices (Foster et al., 1984) 

with alternative poverty lines (US$/person/day) using household income. As a robustness 

check, we employed three poverty lines: $1.15, $1.25
8
 and $1.35 adapted from Zeng et al. 

(2015), which roughly represent a 95% confidence interval for the mean poverty line in 

Zambia (Khonje et al., 2015).  

Like MESR framework, METE is also modeled simultaneously in two stages. In the first 

stage, a farmer chooses one of the four combinations of multiple agricultural technologies 
                                                           
7 We also estimated the average treatment effects on the untreated (ATU) and the results are presented in Table B6 of the online appendix. 

8 We used purchasing power exchange rate to convert it to ZMW3.49/capita/day and ZMW4.09/capita/day for 2012 and 2015, respectively.  
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(MATs) (Table 1). Following Deb and Trivedi (2006), the first stage is estimated as mixed 

multinomial logit (MMNL). For brevity, derivation process of MMNL (for more, see Deb 

and Trivedi, 2006) is excluded because it is similar to multinomial logit selection (MNLS).   

In the second stage of multinomial endogenous treatment effects (METE), we assess 

effects of adopting multiple agricultural technologies (MATs) on poverty as a binary 

outcome. Following Abreu et al. (2015), the expected outcome equation for individual  , 

      , is formulated as: 

 (        |            ̅    )     
     ̅

   ∑   
 
        ∑   

 
                               (7) 

where        is poverty status for household   at time   measured by      as household 

income;          if      is lower than the poverty line;     is a set of exogenous covariates 

with associated parameter vector β;       represents binary variables for observed treatment 

choice; and    denotes treatment effects relative to non-adopters and its coefficient gauge 

effects of adopting MATs on poverty. If the decision to adopt MATs is endogenous, 

assuming      to be exogenous results in inconsistent estimates of    . 

 (        |            ̅    ) is a function of each of latent factors     , e.g., the outcome is 

affected by unobserved factors that affect selection into treatment. For METE model to be 

identified, Deb and Trivedi (2006) recommend use of instruments. We used the same 

instruments explained in section 2.2. We also included the means of all time-varying 

variables ( ̅) and rainfall index as proxy for major shocks to account for unobserved 

heterogeneity and potential simultaneity as explained above. Poverty equations were 

estimated using mtreatreg STATA command. 

3. Study area and data 
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This study was conducted in the districts of Chipata, Katete and Lundazi of eastern 

province—the second largest producer of maize in Zambia (Tembo and Sitko, 2013). In the 

eastern province of Zambia, 89% of farmers grow legumes such as soybean, cowpeas, 

common beans, and groundnuts as intercrop or in rotation with maize (CSO, 2016). Despite 

considerable investment
9
 in input subsidy programs (ISPs) by the government (Mason et al., 

2013), 70% of households are still poor and children suffer from malnutrition—which has 

increased by 23% between 1990 and 2015 (CSO, 2016). In addition, Zambia is one of the 

most vulnerable countries to the negative impacts of climate change (Jain, 2007). For 

example, in the past 30 years, frequent droughts have been observed with resulting decreases 

in maize yields and food security (Jain, 2007).  

To conduct our empirical analysis, we used a unique plot level bipanel
10

 data from 

2011/2012 and 2014/2015 cropping seasons collected by the International Institute of 

Tropical Agriculture and the International Maize and Wheat Improvement Center in 

collaboration with Zambia Agricultural Research Institute. The baseline survey was 

conducted in 2012, whereas the endline survey was conducted in 2015. The baseline survey 

collected household and plot level data from 810 randomly selected households and covered 

1,412 maize plots. (Detailed sampling procedure is found in section A1 of the online 

appendix.) During the endline survey, 707 households were re-interviewed using same 

questionnaire used in 2012 and covered 1,209 maize plots. We were unable to re-interview 

13% of initial households (810) in 2015 due to death and migration among others. Hence, 

they are omitted to achieve balanced household panel. We employed inverse probability of 

re-interview weight (IPW) developed by Wooldridge (2010) to account for potential attrition 

                                                           
9 Most governments in Sub-Sahara Africa region are currently spending more than US$1 billion on the IPSs each year (Jayne and Rashid, 

2013). 

10 In this paper, ―bipanel‖ refers to panel data from two levels: balanced households and unbalanced maize plots. 
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bias
11

 in the panel. Furthermore, we omitted observations that were deemed to be outliers. 

Overall, our analysis is based on bipanel data of 2,621 maize plots from a balanced panel of 

707 households (Table 1). 

 [Insert Table 1 here] 

Joint adoption of multiple agricultural technologies (MATs) led to four (2
2
) 

combinations of practices from which farmers can choose (Table 1). Of the 2,621 maize 

plots, 45% were non-adopters of the multiple agricultural technologies. As shown in Table 1, 

32% practiced only improved maize varieties (IMV1CAPs0) and 12% only conservation 

agriculture (IMV0CAPs1). Both improved maize varieties and conservation agriculture 

(IMV1CAPs1) were adopted on 11% of the plots.  

Descriptive statistics of key variables used in the analysis are presented in Table 2 and 

Table A2 of the online appendix. The results in Table 2 show that the average maize yield is 

2157 kg/ha, whereas the mean real per capita household income is ZMW1103. Overall, 74% 

of the sampled households are poor. However, for welfare indicators such as maize yield and 

real household income, we find that their values are higher in 2012 than in 2015. This could 

be associated with drought experienced in 2014/2015 growing season. 

[Insert Table 2 here] 

Furthermore, we mainly observe that adopters—IMV1CAPs0, IMV0CAPs1, IMV1CAPs1—

obtained more maize yields and household income than non-adopters—IMV0CAPs0—(see 

Table A2). Poverty rate is lower among adopters than non-adopters. We present detailed 

descriptive results on explanatory variables in section A2 of the online appendix. 

4. Empirical results and discussion 

                                                           
11 However, we found that there was little gain in using the IPW in our models. Hence, our analysis excludes IPW. 
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4.1.  Factors explaining the adoption of multiple agricultural technologies 

We estimated both coefficients
12

 and marginal effects from the multinomial logit 

selection (MNLS) in Eq. (2). However, we only discuss average marginal effects which are 

presented in Table 3. It is more convenient to interpret the marginal effects on individual 

probabilities (Nguyen-Van et al., 2017). Results indicate that the marginal effects 

significantly differ across technology choices.  

[Insert Table 3 here] 

Socioeconomic attributes at household level such as education, gender, and asset 

ownership per capita have positive effects on the probability of adoption of improved maize 

varieties only (IMV1CAPs0) and both improved maize varieties and conservation agriculture 

(IMV1CAPs1). Farmers with better education are able to understand benefits of adopting such 

technologies, whereas those who own more assets can afford to buy seed and complementary 

inputs like fertilizer and herbicides. Teklewold et al. (2013) also found that education was 

essential for farmers to adopt conservation tillage packages and improved varieties in 

Ethiopia. The results further shows that female headed households are more likely to adopt 

improved maize varieties and conservation agriculture practices.  

Results show that adoption of improved maize varieties and conservation agriculture 

practices is positively related to land ownership. Roughly 51–54% of Zambia’s land remains 

under customary tenure (Sitko and Chamberlin, 2016). However, it is only 5% of the 

population who access the customary land through the market (Sitko and Chamberlin, 2016). 

The results show that some farming practices under conservation agriculture (e.g., fallow 

under crop rotation) require more land (Table 3). Hence, farmers owning less land have low 

incentives to invest in land–enhancing technologies with long run returns (Fenske, 2010; 

                                                           
12 We present the estimated coefficients in Table B1 of the online appendix. 
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Kamau et al., 2014). Moreover, farmers who own more land have a high probability to 

allocate land and experiment with new technologies. This finding is consistent with Wainaina 

et al. (2016), who observed that plot ownership and size was crucial for adoption of 

technologies like crop residue retention and stone terracing in Kenya.  

Adoption of conservation agriculture (IMV0CAPs1) is positively related to the use of 

fertilizers. As anticipated, application of fertilizers enhances build–up of crop biomass—

which is used as ground cover in IMV0CAPs1. On the other hand, the likelihood of adopting 

improved maize varieties (IMV1CAPs0) reduces with the application of manure on 10% of 

plots. With respect to plot level characteristics, we observe that the joint adoption of 

improved maize varieties and conservation agriculture is positively related with fertile soils. 

The results further indicate that the probability of adopting conservation agriculture and 

improved maize varieties reduces with the rainfall index. However, with frequent droughts 

and dry spells in the study area, farmers are able to understand the benefits—e.g., reducing 

soil erosion and conserving soil moisture (Arslan et al., 2013)—of adopting IMV0CAPs1. 

 

 

4.2. Impacts of adopting multiple agricultural technologies on household welfare 

Table 4 presents multinomial endogenous switching regressions (MESR) based average 

treatment effects of adopting multiple agricultural technologies on household welfare 

outcomes—maize yield, maize income, and real household income—under actual and 

counterfactual conditions. The second stage regression (Eq. (4)) estimates are not discussed 

due to space limitation, but they are presented in the online appendix (Tables B2A–B2C). 

Predicted outcomes from MESR are used to estimate effects of adopting multiple agricultural 

technologies under both conditional and unconditional average effects. 
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(Insert Table 4 here) 

Unconditional average effects of adoption on outcome variables derived from the actual 

and counterfactual distributions are presented in Table B3 of the online appendix. Results 

show that for all multiple agricultural technologies (MATs), on average, adopters realize 

more maize yields and incomes compared to non-adopters. Adoption of both improved maize 

varieties and conservation agriculture increases maize yields and incomes (see Table B3). 

However, these results are only indicative of the effects of adopting MATs and could be 

misleading due to selection bias from both observed and unobserved factors. 

4.2.1. Yield effects 

Table 4 presents the average effects of adoption of multiple agricultural technologies on 

household welfare (maize yield, maize income, and household income) after accounting for 

selection bias originating from observed and unobserved factors. Results in column (3) of 

Table 4 show that adoption of improved maize varieties and conservation agriculture is highly 

associated with significant increment in maize yields. In all cases, households who adopted 

multiple agricultural technologies would have obtained lower benefits had they not adopted. 

Farmers adopting both improved maize varieties and conservation agriculture (IMV1CAPs1) 

had the highest yield gain (658 kg/ha) followed by improved maize varieties only 

(IMV1CAPs0) (498 kg/ha) and conservation agriculture only (IMV0CAPs1) (221 kg/ha). The 

highest yield gain for IMV1CAP1 adopters suggests existence of synergy between improved 

maize varieties and conservation agriculture. This is consistent with expectations because 

maize production benefits from conservation agriculture which helps to conserve soil 

moisture, reducing soil erosion, and nutrient depletion (Arslan et al., 2013; Jaleta et al., 

2016). Additionally, maize-legume rotation helps to fix nitrogen, breaks the life cycle of 

pests, and suppresses weed (Kassie et al., 2018).  
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Besides, the higher yield gap can also be attributed to the fact that in 2014/2015 growing 

season the country experienced droughts. In such events, adopters of conservation agriculture 

can maximize yields as compared to non-adopters. There is evidence that maize-legume 

intercropping or rotation significantly increases yields even under critical moisture stress in 

Zambia (Arslan et al., 2015). In Zimbabwe, Ndlovu et al. (2014) found that farmers produce 

39% more under conservation agriculture compared with conventional farming. Similarly, 

Kassie et al. (2015) and Jaleta et al. (2016) found that adoption of minimum tillage increased 

maize productivity substantially in Malawi and Ethiopia, respectively.  

The yield effects of adoption of multiple agricultural technologies (MATs) are further 

illustrated using kernel densities of predicted maize yield distributions by adoption status 

(Fig. 1). As shown, kernel density of maize yield (log) for both improved maize varieties and 

conservation agriculture (IMV1CAPs1) adopters lies furthest to the right of all other 

technology choices. This is more informative than observed maize yields since the values are 

estimated after controlling for both observed and unobserved factors. This result is crucial for 

policy makers on technology adoption because maximizing yield advantage requires 

promotion of MATs. 

(Insert Fig. 1 here)             

(Insert Fig. 2 here) 

4.2.2. Income effects 

For maize income and household income, results show that, on average, adopters would 

have earned less income from the three technology choices (       ) had they not adopted 

them (Table 4). This implies that adoption of multiple agricultural technologies (MATs) is 

associated with increased income. Overall, results show that joint adoption of improved 
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maize varieties and conservation agriculture (IMV1CAPs1) has the highest income advantage 

of ZMW914/capita. The lowest income is realized by farmers adopting only conservation 

agriculture (IMV0CAPs1) as compared to those adopting only improved maize varieties 

(IMV1CAPs0) (Table 4). Increased yields realized from adoption of MATs translate into an 

increase in household income. This is so because crop income accounts for the largest share 

of household income in Zambia (Khonje et al., 2015). The income gains are clearly shown 

using kernel densities of predicted income distributions (Fig. 2). Kernel density of income 

(log) for joint adopters lies furthest to the right of all other technology choices—IMV1CAPs0, 

IMV0CAPs1, and non-adopters. This is consistent with the findings of Manda et al. (2016) 

and Ng’ombe et al. (2017) in Zambia and Teklewold et al. (2013) in Ethiopia.  

We also estimated average treatment effects for adopters only. Adoption heterogeneity 

effect results presented in Table B4 of the online appendix show that maximum gains would 

be obtained from both improved maize varieties and conservation agriculture (IMV1CAPs1)  

vs improved maize varieties (IMV1CAPs0), followed by IMV1CAPs1 vs conservation 

agriculture (IMV0CAPs1), and IMV1CAPs0 vs IMV0CAPs1 for all outcome indicators. 

However, the results for household income gains from IMV1CAPs0 vs IMV0CAPs1 are 

insignificant. 

 

 

 

4.2.3. Poverty effects  

Multinomial endogenous treatment effects results
13

 for poverty analysis with alternative 

poverty lines on effects of multiple agricultural technologies (MATs) are shown in Table 5. 

                                                           
13 Full results are not presented, but they can be replicated using supplementary materials. 
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For robustness check, all poverty simulations are estimated under the assumptions of 

exogenous (i.e., columns 1–3 of Table 5) and endogenous (i.e., columns 4–6 of Table 5) 

adoption decision of MATs. The results under exogenous assumptions show that adoption of 

MATs significantly reduces the probability of rural poverty by 13–25% points. However, we 

focus our discussion on the endogenous results because they account for the unobservable 

factors. 

(Insert Table 5 here) 

Results in columns 4–6 of Table 5 show that adoption of conservation agriculture 

(IMV0CAPs1) only and improved maize varieties (IMV1CAPs0) only reduce the probability 

of rural poverty by 29–31% and 27–31% points, respectively. However, the highest reduction 

in the probability of rural poverty (34–40% points) is achieved through adoption of both 

improved maize varieties and conservation agriculture. Similarly, Abdulai (2016) also found 

that adoption of conservation agriculture reduced probability of poverty by 27% points in 

Zambia. Hence, promotion and adoption of multiple agricultural technologies remains 

relevant to reduce poverty in the era of climate change. 

4.2.4. Robustness checks 

Instrumental variable (IV)-fixed effects (FE) panel regressions, control function (CF), 

and propensity score matching approaches are also implemented as a means of robustness 

checks. Results of the IV-FE regressions and CF approach are shown in Table 6. Overall, the 

estimated treatment effects are positive and significant, confirming that adoption of multiple 

agricultural technologies has a positive effect on productivity, income, and poverty reduction, 

also after accounting for other possible sources (e.g., reverse causality) of endogeneity. 

Generally, the magnitudes of effects of adoption on productivity and income in Table 6 are 

even higher than multinomial endogenous switching regressions (MESR) based estimates in 
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Table 4. On the other hand, poverty estimates in Table 6 are marginally lower than 

exogenous estimates in Table 5. Overall, the robustness checks suggest that the treatments 

effects discussed above are robust.  

(Insert Table 6 here) 

 Propensity score matching (PSM) results are presented in Table B5 of the online 

appendix and they are consistent with the results (e.g., Table 4) presented above. 

Nevertheless, PSM results for both yield and income effects are slightly lower than MESR-

based results. This is probably due to unobserved factors which cannot be controlled for in 

PSM technique. Furthermore, we estimated the average treatment effects on the untreated 

(ATU) (see Table B6 of the online appendix). The ATU results are not discussed due to space 

limitation, but it is worth noting that non-adopters would have benefited in terms of higher 

yields and incomes had they adopted multiple agricultural technologies (MATs). Again, the 

highest payoff would have been realized from joint adoption of improved maize varieties and 

conservation agriculture compared to individual technology adoption. The robustness checks 

suggest that some caution is necessary when interpreting the exact scale of the estimated 

treatment effects. Nevertheless, we largely find that adoption of MATs has had positive 

welfare impacts on maize yields, household income and poverty reduction.  

5. Conclusion 

This study uses plot level panel data to analyze adoption and welfare impacts of multiple 

agricultural technologies in eastern Zambia. We adapt multinomial endogenous switching 

regression and multinomial endogenous treatment effects framework to correct for selection 

bias and endogeneity originating from both observed and unobserved heterogeneity. We 

combined a panel data estimator with multinomial endogenous switching regressions by 

estimating pooled ordinary least squares and selection models using the Mundlak approach.  
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Results show that adoption of multiple agricultural technologies significantly increases 

maize yields and household income. In all cases, households who adopted multiple 

agricultural technologies either individually or in combination would have obtained lower 

benefits had they not adopted. However, maximum benefits for maize yield and income are 

achieved when farmers adopt both improved maize varieties and conservation agriculture as 

compared to adopting only conservation agriculture or only improved maize varieties. Results 

further show that joint adoption of improved maize varieties and conservation agriculture had 

the larger effects on the probability of reducing rural poverty compared to adopting only 

conservation agriculture or improved maize varieties. However, generally adoption process is 

limited by different constraints such as access to land, extension, rainfall shocks, and access 

to both organic and inorganic fertilizers. This entails the need for specific policies (e.g., land 

tenure policy) that can aggressively address some of these challenges in Zambia. 

Our findings have important policy implications in Zambia. The results suggest that 

promotion of multiple agricultural technologies for wider adoption could generate tangible 

benefits to smallholder farmers in terms of increasing crop productivity and household 

income as well as reducing rural poverty. Overall, the findings suggest that efforts aimed at 

raising household incomes and reducing poverty should focus on promoting the adoption of 

multiple agricultural technologies through provision of improved support services such as 

extension and input supply.  

This study is based on short (only two rounds) panel datasets. Hence, our estimates may 

not have fully captured the adoption dynamics and long run effects of multiple agricultural 

technologies on maize yields, incomes, and poverty. Therefore, future research should focus 

on adoption dynamics and welfare impacts of multiple agricultural technologies using 

nationally representative longitudinal panel datasets. 
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Figures 

 

Fig. 1. Kernel density distribution of maize yield by adoption status. 
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Fig. 2. Kernel density distribution of real household income by adoption status. 

 

 

Tables 

Table 1 

Adoption combinations of multiple agricultural technologies 

Technology choice 
Combinations 

Frequency (%) 

 ( ) 
 

2012  

(n=1412) 

2015  

(n=1209) Full sample (N=2621) 

1 IMV0CAPs0 44 47 45 

2 IMV0CAPs1 11 12 12 

3 IMV1CAPs0 31 33 32 

4 IMV1CAPs1 13 9 11 

Notes: IMV0CAPs0—non-adopters; IMV0CAPs1—adopted conservation agriculture only; IMV1CAPs0—adopted improved maize varieties 

only; IMV1CAPs1—adopted improved maize varieties and conservation agriculture. 
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Table 2 

Descriptive statistics by survey year 

 Variables 
2012   2015   Full sample 

Mean SD   Mean SD   Mean SD 

Outcome variables 
        

Maize yield (kg/ha) 2381 1636 
 

1895 1606 
 

2157 1640 

Real maize income (ZMWՖ/ha) 3240 2227 
 

3470 2941 
 

3346 2583 

Real household income
 
(ZMW/capita) 1348 1858 

 
816 1085 

 
1103 1572 

Poverty status (%) 66 47 
 

84 37 
 

74 44 

Treatment variables 
        

Planted improved maize varieties (yes=1) 0.44 0.50 
 

0.42 0.49 
 

0.43 0.50 

Conservation agriculture practices (yes=1) 0.25 0.43 
 

0.20 0.40 
 

0.23 0.42 

Explanatory variables 
        

Real assets value (ZMW/capita) 1037 2381 
 

521 1442 
 

799 2020 

Household size (number) 7.2 3.1 
 

8.8 4.2 
 

7.9 3.7 

Gender of hh (1=Male) 0.66 0.47 
 

0.81 0.39 
 

0.73 0.44 

Age of hh (years) 44 13 
 

47 13 
 

46 13 

Education of hh (years) 6.5 3.4 
 

6.5 3.3 
 

6.5 3.3 

Total owned land (ha) 4.0 3.6 
 

4.8 5.3 
 

4.4 4.5 

Access to off-farm activities (yes=1) 0.61 0.49 
 

0.43 0.50 
 

0.53 0.50 

Marketing information (yes=1) 0.69 0.46 
 

0.30 0.46 
 

0.51 0.50 

Access to credit (yes=1) 0.75 0.43 
 

0.09 0.28 
 

0.45 0.50 

Plot distance to home (walking minutes) 20.8 24.1 
 

21.2 24.4 
 

20.9 24.2 

Fertile soil (yes=1) 0.36 0.48 
 

0.33 0.47 
 

0.35 0.48 

Moderately fertile soil (yes=1) 0.43 0.49 
 

0.41 0.49 
 

0.42 0.49 

Flat plot (yes=1) 0.52 0.50 
 

0.53 0.50 
 

0.53 0.50 

Moderately sloped plot (yes=1) 0.42 0.49 
 

0.40 0.49 
 

0.41 0.49 

Shallow plot (yes=1) 0.09 0.28 
 

0.19 0.39 
 

0.13 0.34 

Moderately deep plot (yes=1) 0.55 0.50 
 

0.50 0.50 
 

0.53 0.50 

Fertilizer use (kg/ha) 113 107 
 

215 294 
 

160 220 

Herbicide use (yes=1) 0.04 0.20 
 

0.13 0.34 
 

0.08 0.27 

Manure use (yes=1)  0.09 0.29 
 

0.11 0.31 
 

0.10 0.30 

Rainfall index (enough rainfall=1) 0.34 0.47 
 

0.33 0.47 
 

0.33 0.47 

Instrumental variables 
        

Distance to cooperative office  (walking minutes) 27 52 
 

36 91 
 

31 73 

Distance to main market (walking minutes) 348 360 
 

363 350 
 

355 356 

Member of farmer group (yes=1) 0.93 0.26 
 

0.95 0.23 
 

0.94 0.25 

Information on improved technologies (yes=1) 0.82 0.38 
 

0.58 0.49 
 

0.71 0.45 

Contacts with government extension agents (number) 5.2 15.0 
 

0.7 1.5 
 

3.2 11.3 

Contacts with NGO's extension agents (number) 12.8 24.9 
 

1.2 3.3 
 

7.5 19.3 

Notes: Ֆ
 
is Zambia Kwacha currency unit. Exchange rates were ZMW5.15 and ZMW12.00 to a dollar in 2012 and 2015, respectively. 

SD=Standard deviation. hh=household head. 
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Table 3 

Marginal effect of adoption of multiple agricultural technologies 

Variables    IMV0CAPs1   IMV1CAPs0   IMV1CAPs1 

Household size 
 

0.020 (0.025) 

 

0.046 (0.034) 

 
0.024 (0.024) 

Gender of hh 
 

0.009 (0.015) 

 

0.024 (0.021) 

 
–0.023* (0.014) 

Education of hh 
 

–0.000 (0.002) 

 

0.002 (0.003) 

 
0.008*** (0.002) 

Age of hh 
 

–0.037 (0.067) 

 

0.057 (0.088) 

 
–0.036 (0.064) 

Real assets value 
 

–0.006 (0.005) 

 

0.044*** (0.008) 

 
0.000 (0.005) 

Total owned land 
 

0.008** (0.003) 

 

–0.004 (0.004) 

 
–0.000 (0.002) 

Access to off-farm activities  
 

–0.005 (0.020) 

 

0.034 (0.028) 

 
–0.030 (0.019) 

Access to credit  
 

–0.002 (0.021) 

 

–0.023 (0.030) 

 
0.000 (0.021) 

Marketing information  
 

–0.004 (0.021) 

 

–0.049* (0.029) 

 
0.041** (0.020) 

Fertilizer use  
 

0.000*** (0.000) 

 

–0.000 (0.000) 

 
0.000 (0.000) 

Manure use  
 

0.090*** (0.016) 

 

–0.066** (0.032) 

 
0.019 (0.018) 

Herbicide use  
 

0.044 (0.034) 

 

–0.023 (0.053) 

 
0.004 (0.029) 

Plot distance to home 
 

0.001 (0.006) 

 

–0.014* (0.008) 

 
0.018*** (0.006) 

Fertile soil  
 

–0.016 (0.017) 

 

0.020 (0.025) 

 
0.037** (0.018) 

Moderately fertile soil  
 

–0.010 (0.016) 

 

0.011 (0.024) 

 
0.047*** (0.018) 

Flat plot  
 

–0.007 (0.025) 

 

–0.000 (0.038) 

 
–0.023 (0.025) 

Moderately sloped plot  
 

–0.019 (0.026) 

 

–0.023 (0.039) 

 
–0.005 (0.025) 

Shallow plot  
 

–0.014 (0.030) 

 

0.022 (0.044) 

 
–0.028 (0.029) 

Moderately deep plot 
 

0.014 (0.021) 

 

0.007 (0.028) 

 
–0.016 (0.019) 

Rainfall index  
 

–0.032** (0.015) 

 

0.021 (0.019) 

 
–0.030** (0.014) 

Number of observations                                      2621 

Notes: Standard errors in parenthesis. IMV0CAPs0 is the reference category. 

 ***P<0.01, **P<0.05, *P<0.1. 

 

 

 

 

 

 

 

 



 

 

 
This article is protected by copyright. All rights reserved. 

  
 32 

 

 

 

 

Table 4 

MESR based average treatment effects of adoption of MATs on household welfare 

Outcome variables 

Technology 

choice 

 

( ) 

Adoption status   

Average treatment 

effects 

 

Adopting 

 

 

Non–adopting 

 

(       ) 
 

  

(   ) 
 (1)   (2)   (3)= (1)–(2) 

Maize yield (kg/ha) 

IMV0CAPs1 1995 (48) 

 

1774 (75) 

 

221*** (79) 

IMV1CAPs0 2112 (28) 

 

1614 (37) 

 

498*** (33) 

IMV1CAPs1 2582 (101) 

 

1924 (82) 

 

658*** (113) 

Real maize income 

(ZMW/ha) 

IMV0CAPs1 3102 (74) 
 

2708 (115) 
 

394*** (127) 

IMV1CAPs0 3281 (41) 
 

2489 (57) 
 

792*** (52) 

IMV1CAPs1 3876 (144) 
 

2902 (125) 
 

974*** (171) 

Real household 

income 

(ZMW/capita) 

IMV0CAPs1 954 (62) 

 

665 (46) 

 

289*** (64) 

IMV1CAPs0 1122 (44) 

 

675 (36) 

 

447*** (31) 

IMV1CAPs1 1608 (102) 
 

694 (32) 
 

914*** (85) 

Notes: j represents adoption combination of technologies defined in Table 1. Standard errors in parenthesis.  

***P<0.01. 
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Table 5 

Multinomial endogenous treatment effect estimates of adoption impacts of MATs on poverty 

Poverty line Exogenous   Endogenous 

(US$/person/day) $1.15 $1.25 $1.35   $1.15 $1.25 $1.35 

Technology choice 

 ( ) 

(1) (2) (3) 

  

(4) (5) (6) 

IMV0CAPs1 
–0.16*** –0.17*** –0.13*** 

 

–0.30*** –0.31*** –0.29*** 

(0.02) (0.02) (0.02) 

 

(0.08) (0.10) (0.05) 

IMV1CAPs0 
–0.19*** –0.20*** –0.18*** 

 

–0.27*** –0.31*** –0.28*** 

(0.02) (0.02) (0.02) 

 

(0.04) (0.04) (0.04) 

IMV1CAPs1 
–0.22*** –0.25*** –0.24*** 

 

–0.39*** –0.40*** –0.34*** 

(0.02) (0.02) (0.02) 

 

(0.07) (0.09) (0.04) 

Selection terms 

       

               0.17* 0.16 0.20*** 

    (0.09) (0.12) (0.05) 

           
    0.10** 0.13** 0.12*** 

    (0.04) (0.05) (0.05) 

           
    0.20** 0.18* 0.12*** 

    (0.08) (0.11) (0.04) 

 

Notes: j represents adoption combination of technologies defined in Table 1. Standard errors in parenthesis.   

***P<0.01, **P<0.05. 
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Table 6 

Robustness checks on welfare effects of adopting MATs using panel regressions 

Technology choice 
Maize yield  Maize income 

Real household 

income 
Poverty 

IV-FE IV-FE IV-FE  CF 

( ) (1) (2) (3) (4) 

IMV0CAPs1 
2270*** 3249*** 1688*** –0.08 

(6.38) (3.96) (15.08) (1.64) 

IMV1CAPs0 
2577** 4157** 1309*** –0.15*** 

(2.62) (1.92) (7.44) (11.20) 

IMV1CAPs1 
4380*** 6646*** 3102*** –0.17 

(2.79) (2.00) (20.50) (1.75) 

Number  of observations 1414 1414 1414 1414 

Number of households 707 707 707 707 

Notes: Absolute values of z or t–statistics in parentheses; IV= Instrumental variable; FE= Fixed effects; CF= Control function. 

  ***P<0.01, **P<0.05. 

 


