ABOVE-GROUND BOLE CARBON STOCK ESTIMATION USING FOREST INVENTORY AND REMOTE SENSING OF THE SECONDARY FOREST ECOSYSTEM IN IBADAN, NIGERIA

BY

EHIMWENMA VICTOR AGHIMIEN

B. Agric. Forestry and Wildlife (University of Benin) M.Sc. Forest Biometrics and Remote Sensing (University of Ibadan) Matriculation Number: 165839

A thesis in the Department of Forest Resources Management,

Submitted to the Faculty of Agriculture and Forestry in partial fulfilment of the requirements for the Degree of

DOCTOR OF PHILOSOPHY

of the

UNIVERSITY OF IBADAN, NIGERIA.

JULY, 2018

ABSTRACT

Secondary forest ecosystem contributes to global climate change mitigation through carbon sequestration. Above-Ground Bole Biomass (AGBB) is the major component for monitoring and estimating Carbon Stocks (CS) and fluxes in tropical forests. Integrating Remote Sensing (RS) with Forest Inventory (FI) techniques had also been reported to provide accurate estimation of Above Ground Bole Carbon Stock (AGBCS). However, information on AGBCS for the International Institute of Tropical Agriculture (IITA), which hosts relics of the undisturbed secondary forest ecosystem in south-western Nigeria, has not been documented. Therefore, AGBCS of the secondary forest ecosystem was estimated using remote sensing and forest inventory techniques.

Forest inventory and remote sensing data were used for this study. One hundred and forty plots of 50m x 50m were laid in IITA secondary forest using systematic sampling technique at 10% sampling intensity. Trees in each plot were enumerated and identified to species level. The Total Height (TH) and Diameter at Breast Height (DBH) of trees \geq 10 cm were measured to determine Tree Volume (TV). Sixty wood core samples were randomly collected from dominant trees species at breast height for Wood Density (WD) estimation. The TV and WD were used to determine AGBB, which were converted to CS using standard forest inventory method. Pleiades satellite imagery was acquired using RS technique and spectral data for each sample plot extracted. The spectral indices used for AGBB estimation were: Normalised Difference Vegetation Index (NDVI), Difference Vegetation Index (DVI), Infrared Percentage Vegetation Index (IPVI), Optimised Soil Adjusted Vegetation Index (OSAVI) and Renormalised Difference Vegetation Index (RDVI). The RS data were integrated with FI data to develop regression equations for the prediction of AGBB from where the total CS estimate was obtained. Data were analysed using descriptive statistics and linear regression analysis at $\alpha_{0.05}$.

A total of 9,985 individual trees comprising 121 tree species and 30 families were recorded. The highest and least frequency of species recorded were *Funtumia elastica* (61/ha) and *Cordia alliodora* (1/ha) respectively. The TH and DBH ranged from 4.70 to 39.30 m and 10.76 to 74.50 cm, respectively, while TV ranged from 129.57 to 167,186 m³/ha. The WD of tree species ranged from 0.23 to 0.89 kg/cm³. The AGBB and CS ranged from 101.06 to 881,834.92 kg/ha and 50.53 to 440,917.46 kg/ha, respectively. The DVI had the highest AGBB value which ranged from 187 to 15,577 kg/ha, followed by IPVI, RDVI and OSAVI which ranged from 7,561 to 12,324 kg/ha, 64.0591 to 133.178 kg/ha, 0.0134 to 0.5621 kg/ha, respectively, while NDVI had the least values which ranged from -0.01 to 0.48 kg/ha. The best AGBB estimation model was AGBB = $exp(3,496.61 + 0.99 \times (RDVI)^{1/2})$; (Coefficient of Determination = 0.93, Bayesian Information = 2129.34). The total carbon stock ranged from 11,035 to 18,774 kg/ha.

Model with renormalised difference vegetation index was most suitable among other indices for estimating above-ground bole carbon stock when integrated with forest inventory data. Therefore, effective integration of different sensor data will be an important research topic for improving above-ground bole biomass estimation performance.

Keywords: Carbon stock prediction; Secondary forest biomass; Vegetation spectral indices; Remote sensing

Word Count: 500

DEDICATION

This research work is dedicated to almighty God for his guidance, strength, divine favour, divine grace and love endowed on me towards the successful completion of this Ph.D. research thesis.

ACKNOWLEDGEMENTS

First and foremost I would like to thank the almighty God for his presence, favour, divine grace, protection and guidance during the study period. My special thanks go to International Institute of Tropical Agriculture (IITA) that provided me with partial sponsorship.

I would like to acknowledge Forest Biometrics and Remote Sensing Unit, especially Prof. J.S.A. Osho for providing me with fatherly supports during the Ph.D. research thesis as my major project supervisor.

My deepest gratitude and great appreciation goes to my co-supervisors; Dr. O. J. Taiwo (Department of Geography, University of Ibadan), Mr. M. Haertel (GIS and Database unit, International Institute of Tropical Agriculture) and Mrs. Deni Bown (Forest Project Manager, International Institute of Tropical Agriculture) for their continuous supportive feedbacks. Your comments were really constructive and I learned a lot.

I am very thankful to the Head of Department (Forest Resources Management, Faculty of Agriculture and Forestry, University of Ibadan, Ibadan), Prof. B. O. Agbeja and other members of staff (Prof. O. Y. Ogunsanwo, Dr. I. O. Ajewole, Dr. I. O. Azeez, Dr. S.O. Jimoh, Dr. S. O. Olajuyigbe, Dr. A. A. Alo, and Dr. O. F. Falade), for all their supports and necessary scientific information provided during the Ph.D. research thesis.

My sincere thanks goes to Federal College of Forestry (FCF), Forestry Research Institute of Nigeria (FRIN), and my amiable students especially Master Alade Afees Abidemi, for their cooperation and support during the Ph.D. research thesis. I cannot but thank all my colleagues and friends, especially Winner Sanctuary Parish (RCCG) for their endless prayers towards the successful completion of my research thesis.

My deepest gratitude goes to my family, especially to my parents for their prayers, encouragement and moral support. God bless you all.

CERTIFICATION

I hereby certify that this research thesis was carried out by EHIMWENMA VICTOR AGHIMIEN at the Department of Forest Resources Management, Forest Biometric and Remote Sensing Unit, Faculty of Agriculture and Forestry, University of Ibadan, Ibadan, Oyo State, Nigeria

> Supervisor Professor J. S. A. Osho B.Sc. (Hons) Mathematics, University of Ife M.Sc. Statistics, Iowa State University Ph.D. Forest Biometrics, University of Ibadan

AGBC	Above-ground Bole Carbon					
AGB	Above-ground Biomass					
BA	Basal Area					
BGB	Below-ground Biomass					
С	Carbon					
CO ₂	Carbon Dioxide					
CAVIS	Clouds, Aerosols, Water Vapour, Ice and Snow					
CM	Centimetre					
D	Diameter					
DBH	Diameter at Breast Height					
DVI	Difference Vegetation Index					
EVI	Enhanced Vegetation Index					
FAO	Food and Agriculture Organisation					
G	Grams					
GEMI	Global Environmental Monitoring Index					
GHGs	Greenhouse Gases					
GIS	Geographical Information Systems					
GPS	Global Positioning System					
Gt	Giga-tonnes (10 ⁻⁹)					
Н	Total Height					
ha	Hectare					
IITA	International Institute of Tropical Agriculture					
IPCC	Intergovernmental Panel on Climate Change					
IR	Infra-Red					
KG	Kilogram					
L	Length					
Μ	Metre					
MM	Millimetre					
NDVI	Normalized Difference Vegetation Index					
NIR	Near-Infra-Red					
°C	Degree Census					
RB	Reading at the Base					
REDD	Reducing Emissions from Deforestation and Forest Degradation					
RS	Remote Sensing					
RT	Reading at the Top					
IPVI	Infrared Percentage Vegetation Index					
OSAVI	Optimized Soil-Adjusted Vegetation Index					
UNFCCC	United Nations Framework Convention on Climate Change					
UTM	Universal Transverse Mercator					
TSP	Temporary Sample Plot					
VNIR	Visible, Near-Infra-Red					
WSG	Wood Specific Gravity					
WD	Wood Density					
П	Pi					
AGBB	Above-Ground Bole Biomass					
Р	Pleiades					

LIST OF ACRONYMS USED IN THE THESIS

AOI	Automated Optical Inspection				
SFE	Secondary Forest Ecosystem				
DN	Digital Number				
LULC	Land –Use and Land-Cover				
NPV	Non-photosynthetic Vegetation				
K-NN	K-Nearest Neighbor				
ANN	Artificial Neural Network				
SVM	Support Vector Machine				
PLS	Partial Least Squares				
WWF	World Wide Fund				
SFE	Secondary Forest Ecosystem				
DAIS	Digital Airborne Imagery Spectrometer				
AVHRR	Advance Very High Resolution Radiometer				
U	Wind Speed				
Ta	Air Temperature				
FPAR	Fractional Photo-synthetically Active Radiation				
SMA	Spectral Mixture Analysis				
ТСТ	Tasseled Cap Transform				
ALS	Airborne Laser Scanning				
WIFS	Wide Field Sensor				
r _{an}	Aerodynamic Resistance				
C/N	Carbon-Nitrogen				
GLCM	Gray Level Co-occurrence Matrix				
DPI	Dots per inch				
PPI	Pixels per inch				

TABLE OF CONTENTS

Title p	age	PAGE i
Abstra	ict	ii
Dedica	ation	iii
Ackno	owledgements	iv
Certifi	cation	v
List of	Acronyms Used in the Thesis	vi
CHAI	PTER ONE	1
1.0:	Introduction	1
1.1:	General Background	1
1.2:	Problem of Statement	3
1.3:	Objectives of the Study	4
1.4:	Justification of the Study	4
1.5:	Scope of the Study	5
CHAI	PTER TWO	6
2.0	Literature Review	6
2.1:	Importance of Tropical Forest	6
	2.1.1: Forests and Climate change	7
	2.1.2: The Carbon Pools	8
	2.1.3: Forests as Carbon Sinks	9
	2.1.4: The Complexity of Forest Decline	10
	2.1.5: Consequences of Deforestation	11
2.2:	Carbon Allocation in Woody Plants (Trees and Shrubs)	12
	2.2.1: Carbon Sequestration and what is it?	13
2.3:	Techniques for Estimating Above-ground Biomass	14
	2.3.1: Field Measurement Method of Biomass Estimation	14
	2.3.2: Remote Sensing Methods for Biomass Estimation	15
	2.3.2.1: Collection and calculation of biomass reference data	
	based on field measurements	15
	2.3.3: Use of Remote Sensing and GIS for Biomass Estimation	17

	2.3.4: Above-ground biomass estimation with optical sensor data	19	
	2.3.4.1: Fine spatial-resolution data	19	
	2.3.4.2: Medium spatial-resolution data	20	
	2.3.4.3: Coarse spatial-resolution data	22	
2.4:	Allometric Equations for Biomass Estimation	25	
2.5:	Identification of suitable variables from remote sensing data for		
	biomass estimation modeling	27	
2.6:	Extraction and selection of potential variables from remote sensing data	28	
2.7:	Uncertainty analysis of biomass/carbon model predictions		
2.9:	Importance of Biomass Estimation		
СНА	PTER THREE	34	
3.0:	METHODOLOGY	34	
3.1:	The Study Area	34	
	3.1.1: Location	34	
	3.1.2: Drainage	34	
	3.1.3: Climate	34	
	3.1.4: Vegetation	34	
3.2:	Methods	36	
	3.2.1: Study 1: Inventory Field Data Collection	36	
	3.2.2: Laying of Sample Plots	36	
	3.2.3: Bole Height (H)	38	
	3.2.4: Diameter at Breast Height (DBH) and Diameter at top	38	
	3.2.5: Volume Estimation	39	
	3.2.6: Estimation of Wood Density	39	
	3.2.7: Above-Ground Bole Biomass Estimation	40	
	3.2.8: Estimation of carbon stock within a sample plot for the study	40	
	3.2.9: Preliminary data analysis	41	
	3.3.0: Study 2: Satellite Data Collection on Land-use and Land-cover	41	
	3.3.1: Satellite Data and Pre-processing	41	
	3.3.2: Field Observations/Ground Truthing	41	
	3.3.3: Data Acquisition for Forest-Cover Study	41	

	3.3.4:	Extraction of Study Sites	42
	3.3.5:	Forest-Cover Classification Method	42
	3.4.0:	Study 3: The integration of AGBB with the best spectral variable	42
		3.4.1: Vegetation indices (Vis) used	43
	3.5.0:	Study 4: Future Projection Analysis	44
		3.5.1: The developed transition matrix	45
	3.6.0:	Evaluation of selected models	46
		3.6.1: Validation of selected model	48
		3.6.2: Model selection criteria	48
		3.6.3: Model adequacy	49
CHA	PTER F	FOUR	51
4.0:	RESU	LTS AND DISCUSSION	51
4.1:	Vegeta	ation Structure and Forest Composition	51
	4.1.1:	Above-Ground Bole Carbon Stocks Estimation from	
		Inventory Field Data	58
4.2	Above	e-Ground Bole Carbon Stocks Estimation from Remote	
	Sensin	ig Data	64
4.3:	the int	egration of AGBB with the best spectral variable to produce	
	total c	arbon stock map	69
	4.3.1:	Estimation of the best model using exponential function	
		techniques	82
	4.3.2:	Estimation of total carbon stock map	101
4.4:	Predic	t future land cover vegetation map	103
	4.4.1:	Net change in the study area	103
	4.4.2:	Evaluation and validation of the selected model	108
CHA	PTER F	IVE	111
5.0:	CONC	CLUSION AND RECOMMENDATIONS	111
	5.1:	CONCLUSION	111
	5.2:	RECOMMENDATIONS	114
	5.3:	CONTRIBUTION TO KNOWLEDGE	114
REFE	ERENC	ES	115

х

LIST OF TABLES

Table 2.1: Summary of techniques for above-ground biomass estimation	18	
Table 2.2: Examples of biomass estimation using landsat TM data		
Table 2.3: Examples of biomass estimation using coarse spatial-resolution data		
Table 2.4: Potential variables used in a biomass estimation	29	
Table 4.1: Summary of Species Composition	52	
Table 4.2: Distribution of Tree Species in the IITA Secondary Forest Ecosystem	55	
Table 4.3: Tree Volume and AGBCS per Hectare	57	
Figure 4.4:Pearson correlation matrix for forest inventory variables	63	
Table 4.5: Characteristics of Pleiades imagery used for the mapping of AGBCS		
Table 4.6: Pearson correlation matrix for inventory field and spectral variables	71	
Table 4.7: Descriptive statistics for inventory field and spectral variables		
Table 4.8: Best estimated model parameters and performance criteria measures for		
fitted models	81	
Table 4.9: Non-Linear equations for the estimation of AGBB	83	
Table 4.10: Transition probability matrix of land-use and land-cover change	107	
Table 4.11: Descriptive Statistics of data validation	110	

LIST OF FIGURES

	PAGE
Figure 3.1: Map of International Institute of Tropical Agriculture (IITA)	35
Figure 3.2: Plot layout with systematic line transect sampling technique	37
Figure 3.3: Methodology flow chart	50
Figure 4.1: Histogram of bole height in IITA secondary forest ecosystem	59
Figure 4.2: Histogram of diameter at breast height in IITA secondary	
forest ecosystem	60
Figure 4.3: Histogram of wood density of tree species in IITA secondary forest	
ecosystem	61
Figure 4.4: Map of IITA showing the boundary and sample plots	65
Figure 4.5: Vegetation indices applied to Pleiades image	67
Figure 4.6: Vegetation indices applied to Pleiades images	68
Figure 4.7: Scattered plot showing the relationship between above-ground bole biomast	S
and NDVI	74
Figure 4.8: Scattered plot showing the relationship between above-ground bole biomast	S
and RDVI	75
Figure 4.9: Scattered plot showing the relationship between above-ground bole biomast	S
and DVI	76
Figure 4.10: Scattered plot showing the relationship between above-ground bole bioma	SS
and OSAVI	77
Figure 4.11: Scattered plot showing the relationship between above-ground bole bioma	SS
and IPVI	78
Figure 4.12: Scatter plot showing best line of fit for RDVI	84
Figure 4.13: Normal probability plot for RDVI	85
Figure 4.14: Residual plot for RDVI	86
Figure 4.15: Scatter plot showing best line of fit for NDVI	87
Figure 4.16: Normal probability plot for NDVI	88
Figure 4.17: Residual plot for NDVI	89
Figure 4.18: Scatter plot showing best line of fit for DVI	91
Figure 4.19: Normal probability plot for DVI	92
Figure 4.20: Residual plot for DVI	93

Figure 4.21: Scatter plot showing best line of fit for OSAVI	94
Figure 4.22: Normal probability plot for OSAVI	95
Figure 4.23: Residual plot for OSAVI	96
Figure 4.24: Scatter plot showing best line of fit for IPVI	98
Figure 4.25: Normal probability plot for IPVI	99
Figure 4.26: Residual plot for IPVI	100
Figure 4.27: Total Carbon Stock Map	102
Figure 4.28: Transition probability map derived from land –use and land –cover maps	
of 1986 and 2016 for IITA forest reserve	104
Figure 4.29: Projected Land-Cover Map of IITA for 2047	105
Figure 4.30: Validation map showing the study area and sample plots	109

LIST OF APPENDICES

PAGE

Appendix 1: Analy	vsis of the Forest	Inventory Variables	130	0
- pp - mann - r - man.	, 515 61 6110 1 61050	in entery and the	10.	~