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A B S T R A C T

This study provides new evidence of the impact of climate-smart agriculture (CSA) – row planting and drought-
tolerant maize varieties - on farm and welfare outcomes by estimating a multinomial endogenous switching
regression model that corrects for selection bias and farmer heterogeneity in CSA choice. Application of our
model to panel observations of 438 households in Ghana show that adoption of CSA increases both yield and
intensity of maize commercialization but negatively affect own consumption. Specifically, the magnitude of the
impact is relatively higher for adopters of row planting relative to adopters of drought-tolerant maize seeds.
These results suggest the need for development practitioners to increase awareness and emphasize the im-
portance of row planting as a key component of climate-smart agriculture.

1. Introduction

In Africa, 70 % of the population are smallholder farmers who
cultivate an average plot size of less than 2 ha (Alliance for a Green
Revolution in Africa, AGRA, 2017). These farmers especially those in
Sub-Saharan Africa (SSA) rely on poor and unsustainable farming
practices leading to poor soil fertility (Grabowski et al., 2016) with
subsequent decline in crop yield, and high incidence of food insecurity
and poverty (Kassie et al., 2015; Fisher et al., 2015). According to
Hansen et al. (2019), the livelihoods of agricultural households are
mostly affected by these constraints since they operate in environments
characterised by high risks and weak institutions. However, the agri-
cultural sector is expected to lead the African transformation process
given that the sector has considerable untapped irrigation, vast un-
cultivated land for agricultural production, and a huge potential to
address the increasing demand for food and nutrition security due to
population growth, and issues relating to poverty (Fuglie, 2018; AGRA,
2017).

Despite the large share of Africans involved in agriculture and the
potential of becoming food self-sufficient, the region is inundated with
high import bill which stands at US$35 billion, and is estimated to rise
to US$110 billion by 2025 (Adesina, 2017). To close this gap and
achieve the sustainable development goal 2 which seeks to end hunger,
achieve food security and improved nutrition and promote sustainable
agriculture; development partners and African governments have

implemented projects and programs such as soil heath projects, con-
servation agriculture, agricultural value chain mentorship program,
fertilizer subsidy programs among others (Brüntrup, 2011). These
projects and programs are aimed at increasing land and labour pro-
ductivity to achieve sustainable food production. In Ghana, the gov-
ernment of Ghana has launched the “planting for food and jobs pro-
gram” as a strategy to build the capacity of farmers and increase their
access to quality certified seeds and fertilizers through a private sector
led marketing framework. The program also seeks to build the capacity
of extension agents and adequately resource them to train farmers on
good agronomic practices and commercialization of outputs over an e-
agriculture platform (Ministry of Food and Agriculture, 2017). Im-
proved maize variety is one of the target crops for the program since it
is widely cultivated by household for both consumption and commer-
cialization. In view of this, any complementary support to the maize
sub-sector will have a wide ripple effect on incomes and food security.

To increase yield and sustain household income in the midst of
climate change and other related risks, development practitioners argue
for the adoption of climate-smart agriculture (CSA). For example,
drought-tolerant maize (DTM) seed is being promoted among resource-
poor farmers to lower the risks of crop failure resulting from among
others, low and uneven rainfall pattern in different agro-ecological
zones (Fisher et al., 2015). Row planting, a component of climate smart
agricultural (CSA) also has the potential of increasing agricultural
productivity and incomes as well as building resilience against climate
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shocks (Fantie and Beyene, 2019; Teklewold et al., 2017).
Several studies have evaluated the impact of single agricultural

technology use on welfare of farm households (Zeng et al., 2017;
Abdulai, 2016; Asfaw et al., 2016; Jaleta et al., 2016; Khonje et al.,
2015; Bezu et al., 2014). Issahaku and Abdulai (2019) find that adop-
tion of climate smart practices positively and significantly impacts on
food and nutrition security. Abdulai and Huffman (2014) establish that
adoption of soil and water conservation measures impact positively on
yields and net farm revenues. Some studies (Ng’ombe et al., 2017;
Teklewold and Mekonnen, 2017; Manda et al., 2016) have used cross-
sectional data to analyse the economic impact of multiple technology
adoption. Such results are very insightful but unable to deal with
econometric issues (unobserved heterogeneity due to time-varying
characteristics) associated with the use of cross-section data (Michler
et al., 2019). However, panel data is able to produce a more accurate
inference of model parameters, accounts for dynamism in adoption
(uncovering dynamic relationships), and overcome measurement errors
that may bias parameter estimates (Hsiao, 2007). Using panel data,
Khonje et al. (2018) find that adopting improved seed and conservation
agricultural practices impact positively on maize yield and income but
negatively on poverty. Despite the numerous studies on the economic
and welfare impact of improved maize varieties in SSA, there is limited
evidence on the welfare impact of row planting as a complement to
improved seed. A more recent study that uses cross-sectional data show
that row planting impacts positively on per capita consumption and
crop income per hectare (Fentie and Beyene, 2019). However, their
study is limited in terms of identifying how other technologies com-
plement row planting.

This study contributes to the literature by identifying the relevant
factors influencing the adoption of row planting and improved seed.
Secondly, the study adds to the literature on agricultural innovation
systems by using a panel data and Multinomial Endogenous Switching
Regression (MESR) model to establish how row planting and DTM
variety impacts on yield, intensity of maize commercialization and own
consumption per adult equivalent unit (AEU). Finally, the study de-
monstrates the effectiveness of row planting as a mechanism for in-
creasing resilience in farming systems.

The rest of the paper is organized as follows. Section 2 describes the
theoretical and empirical strategy employed by the study while section
3 discusses and describes the data. Section 4 presents the empirical
results and discussion with section 5 highlighting the main conclusions
and implications of the study.

2. Theoretical framework and empirical strategy

The decision to use CSA practice is a behavioural response thus
modelled within the random utility framework (Kassie et al., 2018; Ali
and Abdulai, 2010) where a farmer chooses a component of the CSA
practices that increase utility. Following the argument of Pannell et al.
(2014), we consider a household’s decision to adopt CSA practices in a
reference year a constrained optimization problem where the poly-
chotomous adoption decision depends on a number of factors including
available information, relative costs and benefits of CSA, and socio-
economic conditions. A household may decide to adopt a single or a
combination of the CSA practices such as DTM variety (IMP), row
planting (ROW), and a combination of row planting and DTM variety
(IMPROW).

Given that farmers make production decisions regarding the op-
timum input choice, those decisions can be modelled based on expected
profit. A farmer will select any of the choice sets (of CSA practices) if
the expected profit from adoption is higher than the expected profit
from non-adoption as follows:
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where Qit
CSA and Qit

NCSA are the respective vector of outputs for CSA and
non-CSA (NCSA) farmers; pit is a vector of output prices which is con-
sidered to be same for both category of farmers; jit and Zit are vectors
of input prices and inputs respectively.

We expect that the welfare pathway effect of CSA adoption will be
realized through an increase in crop yield. Adoption of CSA practice
will lead to an increase in crop yield ceteris paribus which will likely
increase market participation (intensity of commercialization) as-
suming that market conditions are favourable (Barrett, 2008). With
increased market participation, own consumption is likely to reduce
due to increased sales. If the outcome variables are a linear function of
the adoption decision, along with a vector of other explanatory vari-
ables X , and regional dummy variables Dv, then the following equation
holds:

= + + + +Y X T D cjit jit jit v i it (2)

where Yit is the outcome variable, Tit represents an indicator variable for
CSA adoption, and are vectors of parameters to be estimated, ci is
unobserved time-constant factors, and it is a mean zero, identically and
independently distributed (iid) random error assumed to be un-
correlated with the explanatory variables. The parameter accurately
measures the impact of adoption on the outcome variable under the
condition that farmers are randomly assigned to treatment and non-
treatment groups (Faltermeier and Abdulai, 2009). Direct estimation of

will be biased given that the adoption of CSA practices was non-
random. Secondly, farmers may self-select and the decisions to adopt
are likely to be influenced by unobserved human (motivation, en-
trepreneurial ability, preferences, innovative ability, etc.) and farm
characteristics (average soil quality or fertility) and observed factors
that may be correlated with the outcome variables (Pannell et al., 2014;
Marenya and Barrett, 2009). For example, risk averse farmers may be
more likely to adopt a single CSA practice while risk-lovers may be
more likely to adopt combinations of CSA practices. The differences in
the level of adoption may have heterogeneous effect on the outcome. In
view of the above challenges, there is a need to address self-selection
and unobserved heterogeneity associated with economic evaluations of
the non-random adoption of innovations such as CSA practices.

To address the problem of selection bias, several studies (Martey et al.,
2019; Khonje et al., 2015; Kassie et al., 2011) used the propensity score
matching (PSM) method. According to Jaleta et al. (2016) and Abdulai
(2016), PSM is unable to correct for selection bias attributable to un-
observed factors. The use of fixed effects (FE) model controls for the en-
dogeneity problem (arising from unobserved heterogeneity) by eliminating
the effects of time-constant factors. Employing the FE model on the adop-
tion of CSA practices may be problematic based on the assumption that the
model difference out the correlation between the individual effects and the
explanatory variables. However, some studies have argued that this is a
strict assumption since the economic outcome of CSA can be heterogeneous
as a result of both observed and unobserved characteristics (Kassie et al.,
2018; Suri, 2011). The FE model also assumes that unobserved time-con-
stant variables are the only omitted variables in estimating the use of CSA
practices on the outcomes. Suri (2011) argues that this assumption is less
likely to hold given that households might move in and out of CSA practices
during the period of the panel as a result of changes in unobservable factors
that may also affect the outcomes.

We employ the multinomial endogenous switching regression
(MESR)1 to account for selection bias and endogeneity arising from

1 This is a specific class of panel endogenous switching regression model
proposed as by Malikov and Kumbhakar (2014). The MESR is applicable in this
case due to the polychotomous nature of the choice of CSAs.
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both observed and unobserved heterogeneity. Application of the MESR
have several advantages. First, it corrects for the selection bias by
computing an inverse Mills ratio (IMR) based on the theory of truncated
normal distribution (Malikov and Kumbhakar, 2014; Bourguignon
et al., 2007). Second, it enables the construction of counterfactuals
based on returns to the characteristics of CSA adopters and non-adop-
ters (Kassie et al., 2017). Third, it allows for an interaction between the
CSA technology choice set and the explanatory variables to capture the
effect of CSA on a shift of both intercept and slope of the outcome
equation (Abdoulaye et al., 2018; Kassie et al., 2017; Di Falco and
Veronesi, 2013). Finally, the model identifies the specific choice of CSA
practices with the highest outcome effect (Wu and Babcock, 1998).

The MESR is a two-stage simultaneous estimation technique. The
first stage models farmers’ choice of CSA using a multinomial logit se-
lection (MNLS) equation by accounting for unobserved heterogeneity.
The IMRs calculated from the first stage are included in the outcome
equation as additional covariates to account for selection bias from
time-varying unobserved heterogeneity. The outcome equation is esti-
mated using Ordinary Least Squares (OLS).

2.1. First stage: Multinomial logit selection model

As earlier stated, the first stage estimation of the factors that in-
fluence the choice of CSA is modelled within the random utility fra-
mework where a farmer i in time t chooses a CSA technology set
( = ……j 1, , 3) that maximizes expected utility (Ujit). A farm household
will choose a CSA technology set j if its expected utility is relatively
higher than other technology set k i.e. = <U Umax( ) 0it k j

kit jit1
* * .

Assuming the utility from choosing a CSA technology set j can be
represented by the latent variable Ujit

* . Following Khonje et al. (2018),
we specify the latent model that describes farmers’ CSA adoption be-
haviour as:
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where Xjit is a vector of observed covariates (demographic, farm char-
acteristics, wealth indicators, access to extension and regional dum-
mies2 that accounts for temporal and spatial differences in agro-ecology
and institution) that affect the probability of choosing a CSA technology
set; Xji is the mean of all time-varying covariates; and are vector of
parameters to be estimated and ci and jit represent the household
specific heterogeneity and time-varying unobserved factors or idio-
syncratic errors, respectively. A correlation between the unobserved
factors and explanatory variables (E X[ | ] 0jit jit ) could lead to incon-
sistent estimate of the MNLS model. Based on the assumption that jit is
independent and identically Gumbel distributed across all CSA choice
sets (i.e. the independence of irrelevant alternatives (IIA) hypothesis)
(Bourguignon et al., 2007), Eq. (3) leads to a multinomial logit model
(Mc-Fadden, 1973) where the probability (Pjit) that a farmer i at time t
will choose technology j out of J options can be expressed as:
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We estimate Eq. (5) using a pooled MNLS model with correction for

unobserved heterogeneity using the Mundlak (1978) and Wooldridge
(2010) approach where the time-invariant unobserved effect (ci) is
modelled as a linear projection of the means of all time-varying ob-
served explanatory variables (Xji) as: = +c Xi ji i.

2.2. Second stage: Multinomial endogenous switching regression model
(MESR)

The second stage estimates the impacts of CSA choice sets
(IMP0ROW0—non-adopters as reference category; IMP1ROW0—
adopters of DTM variety; IMP0ROW1—adopters of row planting only;
IMP1ROW1—adopters of both improved varieties and row planting) on
farm level and welfare outcomes. However, the IMP1ROW1 category of
farmers were dropped due to less data points. The choice of a specific
CSA technology leads to a separate outcome equations with the treat-
ment effects (of interest) being a binary comparison of the actual and
counterfactual outcomes for CSA adoption and non-adoption. Following
Kassie et al. (2018) and Khonje et al. (2018), the outcome equation for
each possible regime j with selection bias correction term is specified
as:

= + + + =
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where Yjit represents the outcome associated with the selected regime
= …j j J( 0, ., ) and observed for all possible combination of CSA prac-

tices used, Mjit represents a vector of explanatory variables, Mji re-
presents the means of all time-varying variables included to control for
unobserved heterogeneity (Mundlak, 1978; Wooldridge, 2010), is the
covariance between jit (first stage) and µjit (second stage), ˆjit is the
IMR calculated from the estimated probabilities in Eq. (5).

The inclusion of the IMRs in Eq. (6) leads to a consistent estimate of
j and j using OLS. Given that the second stage outcome model include

estimates from the first stage selection model, the standard errors in Eq.
(6) are bootstrapped to account for heteroscedasticity (Khonje et al.,
2018). Even though Eq. (6) can be identified using non-linearity of the
selection model, it is important to observe exclusion restriction (Di
Falco, 2014), for. Following previous studies (Khonje et al., 2018; Zeng
et al., 2017; Abdulai, 2016; Kassie et al., 2015), we exclude access to
extension services (dummy and continuous) and extension contacts
from our outcome equations. Agricultural extension agents are the main
source of agricultural information regarding new technologies and
practices. The only means of causal impact is through adoption of CSA
given that farmers will adopt modern technologies when they have
adequate information about the benefits. The admissibility of the in-
strument is established through a simple falsification3 test proposed by
Di Falco et al. (2011). The results confirm that the excluded variables
have significant effect on CSA practices but do not significantly influ-
ence the outcome variables of non-adopters (Table A1).

2.3. Estimation of average treatment effects on the treated (ATT)

The treatment effect on the treated due to the adoption of CSA is
computed by comparing the expected values of outcomes of adopters
and non-adopters of CSA in actual and counterfactual scenarios. The
actual expected outcomes of adopters is expressed as:

= = + +E Y U j M M M M( | , , , ˆ ) ˆjit jit ji jit j jit j ji j jit (7a)

2 Please refer to Khonje et al. (2018) and Kassie et al. (2017) for more detailed
explanation.

3 A falsification test certifies the admissibility of the selection instrument as a
valid instrument: if a variable is an appropriate selection instrument, it will only
influence the adoption decision, but not the welfare outcomes.
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The expected outcomes of adopters had they decided not to adopt
(counterfactual)

= = + +E Y U j M M M M( | , , , ˆ ) ˆit jit ji jit jit ji jit1 1 1 1 (7b)

Eq. (7b) represents the outcome for what CSA adopters would have
obtained if the coefficients on their characteristics (M M, , ˆjit ji jit) were
the same as the coefficients on the characteristics of non-adopters
(Khonje et al., 2018; Kassie et al., 2017; Teklewold et al., 2013).

The ATT4 is computed as the difference between Eq. (7a) and Eq.
(7b) (Khonje et al., 2018; Kassie et al., 2017) as follows:
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The first term of Eq. (8) ( )j 1 captures the expected change in the
mean outcome due to the differences in coefficients of the observed
characteristics. The second ( )j 1 and third ( )j 1 terms in Eq. (8)
corrects selection bias and endogeneity originating from unobserved
heterogeneity (Khonje et al., 2018).

Our indicators for farm level and welfare outcomes are yield
(measured as the total output per hectare), intensity of maize com-
mercialization (measured as the ratio of quantity of maize sold to the
total output) and own consumption5 per AEU (measured as the quantity
of maize available for consumption divided by adult equivalent unit).
The data is limited in terms of exploring other important welfare in-
dicators such as poverty and food security.

3. Data and descriptive statistics

The study was conducted in all the maize growing regions of Ghana
except the Greater Accra Region (Fig. 1). The study relied on a panel
data (2013 and 2018) which was collected under a joint collaboration
between the Consultative Group of International Agricultural Research
(CGIAR) (i.e. International Food Policy and Research Institute (IFPRI)
and International Institute of Tropical Agriculture (IITA)) and two in-
stitutes of Ghana’s Council for Scientific and Industrial Research (CSIR)
(Crops Research Institute (CRI) and Savanna Agricultural Research In-
stitute (SARI)). The baseline survey was conducted in 2013 by IFPRI,
CSIR-CRI, and CSIR-SARI while the endline survey was conducted in
2018 by IITA/CSIR-SARI.

A multi-stage sampling techniques (clustered and randomized
sampling procedure) was employed in the selection of the farmers. The
sampling framework was all maize-producing districts with more than
3,000 ha (average for 2009–2011) under maize cultivation. In the first
stage, the proportional6 probability sampling approach was used to
assign more weight to districts with higher maize productions and
followed with random selection of 30 districts. In the second stage,
enumeration areas (EAs) were randomly selected in each sampled dis-
trict. The definition of an EA was based on the same classifications and
boundaries as used in Ghana’s Population and Housing Census and the
country’s Living Standards Survey (GLSS) (Ragasa et al., 2014). A total
of 90 EAs were randomly selected. The third stage was followed by
random selection of seven farmers in each of the sampled EAs. In
summary, a total of 630 farmers were randomly sampled from 90 EAs in
30 districts of Ghana. Following the definition of Ragasa et al. (2014), a

farmer in our sample is defined as one who managed and took decisions
about a maize plot during the major season of 2012 (with a minimum of
0.5 acres, or 0.2 ha, of maize area included in the list of maize farmers).
A follow up survey of the same households was conducted in 2019 to
generate a panel unit for the analysis. We interviewed 555 households
(representing 88 % of initial households in 2013) during the endline
survey using the same set of questionnaires administered in 2013. Out
of the 555 farmers, we observed an attrition effect of 20 % bringing the
total sampled units to 438. The attrition effect was mainly due to mi-
gration, death, inter alia. To achieve a balanced household panel, we
dropped households who were not present at the time of the survey.

The data contains information on household demography, farm
characteristics, farm management practices, soil improvement tech-
nologies, seed source, adoption of DTM varieties, information on ex-
tension services related to crop production, risk preferences, and pat-
tern of maize utilization. In this study, we refer to CSA as adoption of
DTM varieties and row planting. An adopter is considered to be a
farmer who have used the farm technologies for at least a year during
the period of the survey. DTM variety and row planting are defined as a
dummy variable taking a value of 1 if a farm household uses the
technologies. We generated a multinomial choice variable by categor-
izing households according to their adoption of the two farm technol-
ogies in isolation.

Table 1 shows the outcome and explanatory variables (demography,
farm, and institutional characteristics of the farm households) used in
the analysis. Table A2 in the appendix reports the same outcome and
explanatory variables based on adoption of CSA. The average yield,
sales intensity, and own consumption per AEU are 1152 kg/ha, 0.69,
and 0.64 respectively. By disaggregating the farm and welfare outcomes
based on year, we observed that yield and sales intensity are relatively
higher in 2013 than in 2018. However, for own consumption per AEU,
the value is higher in 2018. The proportion of farm households who
adopted DTM variety increased from 59 % in 2013 to 82 % in 2018
while the proportion of households who practice row planting de-
creased from 75 % in 2013 to 63 % in 2018. The high level of DTM
variety adoption may be attributed to the vigorous promotion and
technical support provided to farmers by national and international
research organizations while high cost of labour may be accounting for
the decrease in the use of row planting. Table A2 in the appendix shows
that adopters of CSA (IMP1ROW0, and IMP0ROW1) obtain higher maize
yield and sales intensity than non-adopters (IMP0ROW0).

Conversely, non-adopters record a higher sales intensity in 2018
than adopters. With the exception of adopters of row planting, adopters
of improved maize record higher own consumption per AEU in 2013
but the trend changes in 2018 where all the adopters recorded higher
own consumption per AEU than the non-adopters (Table A2). Given
that the descriptive statistics are unconditional associations, we are
unable to attribute the changes in farm and welfare outcomes to the
adoption of CSA since other factors may be driving the changes.

The gender distribution across the sampled households is the same.
Sampled households are relatively young, natives with 8 household
members and 6 years of formal education. With respect to farm char-
acteristics, 25 %, 18 %, and 53 % of the farmers practice intercropping,
are model farmers, and use fertilizer, respectively. About 38 % of the
farmers cultivate maize on steep lands. The average farm size and
walking distance to the nearest farm plot is 1.68 ha and 45min, re-
spectively. Farmers travel an average distance of 12 km to the nearest
extension office. About 35 %, 39 %, and 53 % of farmers are members
of FBOs, have contact with agricultural extension agents, and have been
visited by extension agents, respectively.

We further examined the transition and switching behaviour of farm
households with respect to the use of CSA during the two periods
(Table 2). The study identified four categories of CSA users – “Non-
users” (farm household who never used any of the CSA in both periods);
“Discontinued users” (farm household who uses a specific CSA in 2013
but not in 2018); “New-users” (farm household who did not use the

4 The ATT is computed based on the post-estimation prediction of the actual
and counterfactual expected value of the outcomes for a household that adopts
technology j after estimating the MESR in Eq. (6).

5 Own consumption is computed by subtracting the amount of maize sold,
gifted and seed from the household’s own production.

6 The proportional probability sampling technique assigns districts with a
larger production area of maize a higher probability of being selected. The
selected districts represent 40 percent of the total maize production area (and
39 percent of the total production in tons or 37 percent of total acreage) in
Ghana between 2009 and 2011 (Ragasa et al., 2014).
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specific CSA in 2013 but adopted in 2018); and “Stayers” (farm
households that adopted the same CSA in both periods). The data in-
dicate that 6% and 13 % of the sample households are non-users of
improved varieties and row planting, respectively and about 45 % and
36 % of the sampled households switch in and out of improved varieties
and row planting, respectively between 2013 and 2018. For stayers, the
data shows that 49 % and 51 % used improved varieties and row
planting in both periods. Household behaviour regarding dis-adoption
and new adoption may be driven by differences in observed and un-
observed time-constant and time-varying factors.

4. Results and discussion

4.1. Determinants of adoption of CSA

The marginal effects of the first stage (Eq. 5) MNL regression are
presented in Table 3. The results show that factors influencing the
choice of CSA differ significantly across technology choices. The Wald

test suggests that the explanatory variables included in the MNL se-
lection model provide a good explanation regarding the choice of CSA.
The Mundlak and instrumental variables significantly explain the
choice of CSA which suggests that failure to account for unobserved
heterogeneity and endogeneity will lead to a biased estimate of CSA
choice on the outcome variables. Based on the results, the use of pooled
MNL selection model is appropriate.

Demographic characteristics such as gender and years of education
significantly influence the adoption of DTM variety (IMP1ROW0).
Female-headed households are 5% more likely to adopt improved
varieties compared to male-headed households. Consistent with the
findings of Khonje et al. (2018) and Teklewold et al. (2013), educated
farmers are more likely to adopt both DTM varieties and row planting.
Education is expected to increase farmers’ receptivity and utilization of
modern technologies. However, the results indicate that education de-
creases the probability of adopting only improved varieties. The results
contradicts the findings of Bezu et al. (2014) who find that education
increases the probability and intensity of adopting improved maize

Fig. 1. Sampled districts for the maize and rice adoption study.
Source: Ragasa et al. (2014)
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varieties in Malawi. Educated household heads are likely to engage in
off-farm activities that guarantees relatively high and reliable income
thus reducing their effort in agricultural activities. In Ghana (especially
the northern part—Upper East, Upper West and Northern regions),
most of the DTM seeds were distributed to farmers through a devel-
opment project, and therefore, farmers are in these regions are less
likely to buy improved seed. Household size increases the adoption of
row planting (IMP0ROW1) but decreases the adoption of DTM varieties.
Row planting is labour-intensive thus the positive correlation with
household size. The results is consistent with Fentie and Beyene (2019)
who find a positive relationship between household size and row
planting in Ethiopia. Nativity (form of social capital) increases the
probability of using improved maize seed. Natives usually have access
to communal resource such as land for agricultural activities and more
likely to benefit from agricultural development programs.

Distance to farm plots decreases the adoption of row planting.
Modern technologies are more likely to be adopted on farm plots closer
to the households. Fertilizer use is negatively associated with the
adoption of only DTM varieties. The finding could be due to the com-
plementarity or substitutability between fertilizer and CSA. In addition,
cost of fertilizer may be driving the low adoption of DTM seed given a
farmer needs to apply fertilizer to DTM seed in order to get optimum
yield. There is the need to encourage farmers to complement DTM
variety with fertilizer. The results further show that adoption of row
planting is positively related with slope of farm plot. Ownership of

motor bicycle increases the adoption of DTM (11 %) but decreases the
probability of adopting only row planting (23 %). Khonje et al. (2018)
found a similar result where assets increase the adoption of improved
maize and conservation practices in Zambia. Farmers who own assets
can liquidate it when exposed to extreme negative weather and income
shocks and invest in modern inputs and CSA practices. The probability
of only adopting row planting is higher for farmers who have contact
with agricultural extension agents. Consistent with our findings, Fentie
and Beyene (2019) find a positive relationship between extension and
row planting in Ethiopia. Surprisingly, we find no significant effects of
farm size and land ownership on the adoption of CSA despite their
importance based in the literature (Khonje et al., 2018; Wainaina et al.,
2016; Bezu et al., 2014; Kamau et al., 2014).

4.2. Impacts of CSA on farm and welfare outcomes

Table 4 highlights the impact of CSA on yield, sales intensity, and
own consumption per AEU under actual and counterfactual conditions
after controlling for selection bias. The results from the second stage
regression show that some of the time averages and selection correction
terms are significant in most of the outcome equations. Table A3 in the
appendix presents the results of the unconditional average effects (an
indication of the effect of CSA on outcomes) of adoption on yield, in-
tensity of commercialization, and own consumption per AEU derived
from the actual and counterfactual distributions. On the average,
adopters of CSA recorded higher maize yield and intensity of com-
mercialization than non-adopters. Conversely, non-adopters of CSA
realized higher own consumption per AEU than adopters. These results
do not account for selection bias due to both observed and unobserved
factors. However, the results in Table 4 accounts for selectivity bias.

The results show that adoption of CSA impacts positively on maize
yield. The adoption of row planting (IMP0ROW1) recorded the highest

Table 1
Descriptive statistics by survey year.
Source: Authors computation based on IITA-IFPRI panel survey, 2018.

Variables 2013 2018 Pooled sample

Mean SD Mean SD Mean SD

Outcome variables
Yield (kg/ha) 1199.10 1082.67 1104.28 1279.59 1152.52 1183.78
Sales intensity 0.74 0.26 0.64 0.31 0.69 0.29
Own consumption per AEU 0.59 0.81 0.69 0.89 0.64 0.85
Treatment variables
Planted improved varieties (1= yes) 0.59 0.49 0.82 0.38 0.71 0.46
Practice row planting (1= yes) 0.75 0.43 0.63 0.48 0.69 0.46
Explanatory variables
Gender of household head (1=male) 0.78 0.42 0.23 0.42 0.50 0.50
Age of household head (years) 44.49 11.72 49.21 11.26 46.80 11.73
Education of household head (years) 6.44 5.01 5.54 5.57 5.99 5.31
Nativity (1=native) 0.63 0.48 0.64 0.48 0.63 0.48
Household size (number) 8.52 5.46 8.40 6.31 8.46 5.90
Practice intercropping (1=yes) 0.39 0.49 0.09 0.29 0.25 0.43
Distance to plot (minutes) 43.59 36.64 46.97 40.02 45.25 38.36
Owns land (1= yes) 3.41 1.89 3.27 1.18 3.34 1.60
Farm size (hectare) 1.56 1.54 1.80 2.24 1.68 1.92
Slope (1=slope) 0.44 0.50 0.32 0.47 0.38 0.49
Model farmer (1= yes) 0.27 0.44 0.10 0.30 0.18 0.39
Use fertilizer (1= yes) 0.50 0.50 0.57 0.50 0.53 0.50
Fertilizer use (years) 3.30 3.69 6.67 4.24 4.52 4.21
Owns bicycle (1= yes) 0.52 0.50 0.94 0.23 0.73 0.44
Owns motor (1= yes) 0.19 0.40 0.95 0.23 0.57 0.50
Owns sprayer (1= yes) 0.65 0.48 0.93 0.25 0.79 0.41
Instrumental variables
Distance to extension (kilometers) 11.61 29.52 12.94 56.82 12.27 45.19
Member of FBO (1= yes) 0.29 0.46 0.41 0.49 0.35 0.48
Household head contact extension (1= yes) 0.28 0.45 0.49 0.50 0.39 0.49
Extension contact household head (1= yes) 0.50 0.50 0.55 0.50 0.53 0.50

Notes: SD refers to standard deviations.

Table 2
Transitions in CSA practices (%) over the sample periods (2013 and 2018).

Good Agricultural Practices Non-users Discontinued New-users Stayers

Improved varieties 6.39 11.19 33.79 48.63
Row planting 12.79 24.43 11.64 51.14
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positive yield effect (271 kg/ha) followed by the adoption of DTM
varieties (IMP1ROW0) which increases maize yield by 122 kg/ha. In
eastern Zambia, Khonje et al. (2015) find a positive effect of improved
maize varieties on yield. Alemu et al. (2014) observe that row planting
increases yield by 14 % in Ethiopia. Contrary to our findings,
Vandercasteelen et al. (2018) did not find any significant effect of row
planting on teff yield in Ethiopia.

With respect to the intensity of commercialization, the results show
that on the average adopters of CSA are more likely sell a larger share of
their maize. The results indicate that both DTM seed and row planting
have differential effects on the intensity of maize commercialization.
For example, while adopters of row planting (IMP0ROW1) recorded
relatively higher positive intensity of maize commercialization of 0.13,
adopters of DTM varieties (IMP1ROW0) realized the lowest intensity of

maize commercialization (0.09). We expect higher maize yield to
translate to higher market participation assuming market conditions are
favourable to smallholder farmers. Farm households participate in
output markets to generate income in order to meet household ex-
penditures. In addition, they participate in market to diversify their
food choices by exchanging own production with other food items not
produced within the households. The results suggest that by encoura-
ging the use of CSA, there is the likelihood of increasing market par-
ticipation that will translate to higher income and increase food choices
within farm households.

The results reveal that adoption of CSA reduces own consumption
per AEU. Adoption of only improved maize varieties have a negligible
negative effect on own consumption per AEU while adoption of row
planting (IMP0ROW1) have a negative effect on own consumption per
AEU. These results are expected given that adoption of CSA increases
household maize commercialization intensity thus the quantity of own
consumption would also be expected to decline. It is possible that re-
duction in own consumption may be complemented with increase in
consumption of other food items not directly produced by the house-
holds. Household food diversification may be driving the negative ef-
fect of CSA on own consumption. Our results contradict Fentie and
Beyene (2019) and Bezu et al. (2014) who find a positive effect of
improved maize adoption on own consumption per AEU in Malawi and
Ethiopia, respectively.

4.3. Alternative specifications: IV-fixed effects

To check for robustness of our results, we use an alternative speci-
fication (IV fixed effects panel regression) that account for the en-
dogeneity in the choice of CSA. The results of this estimation are re-
ported in Table 5. The estimation is consistent with the previous
findings where adoption of CSA impacts positively on maize yield and
intensity of maize commercialization but impact negatively on own
consumption per AEU. However, the magnitudes of the effects of
adoption on maize yield and own consumption per AEU is consistently
lower for the MESR-based estimates (Table 4) compared to the IV-fixed
effects (Table 5). With the exception of adopters of only DTM varieties,
the magnitudes of the MESR-based estimates is consistently higher for
row planting relative to the IV-fixed effects estimates. Despite the dif-
ferences in the scale of effect, our results show that adoption of CSA
influences farm and welfare outcomes

5. Conclusion

Most studies in SSA have focused on the adoption of single agri-
cultural technologies on the welfare of smallholder farmers. Yet little is
known about the impact of row planting on farm and welfare outcomes
despite vigorous promotion of CSA practices by development organi-
zations. This paper examines the adoption and farm and welfare

Table 3
Marginal effect of adoption of agricultural technologies.
Source: Authors estimation based on IITA-IFPRI panel survey, 2018.

(IMP1ROW0) (IMP0ROW1)

Variables Marginal Robust Std. Marginal Robust Std.

effect error effect error
Gender (1=male) −0.053* 0.028 −0.032 0.029
Age (log) 0.052 0.122 0.020 0.132
Years of education (log) −0.030** 0.012 −0.009 0.012
Household size (log) −0.070* 0.039 0.094* 0.049
Distance to farm plot (log) −0.014 0.018 −0.038* 0.019
Fertilizer use (years) −0.105*** 0.025 −0.019 0.024
Plot size (log) 0.044 0.044 0.006 0.047
Land ownership (1= yes) −0.001 0.013 0.020 0.015
Nativity (1=native) 0.048* 0.028 −0.028 0.028
Slope of farmland

(1=slope)
−0.017 0.054 0.098* 0.056

Model farmer (1= yes) −0.061 0.040 −0.050 0.035
Practice intercropping

(1=yes)
0.034 0.054 0.062 0.060

Owns motor (1= yes) 0.110** 0.045 −0.227*** 0.048
Extension contact farmer −0.003 0.045 0.083*** 0.050
Farmer contact extension −0.055 0.050 −0.018 0.049
Distance to extension

(log)
0.012 0.017 0.018 0.016

Mundlak variables Yes Yes Yes Yes
Region FE Yes Yes Yes Yes
Joint significance of

instrumental
variables χ2 (3)

6.65*

Joint significance of time-
varying covariates: χ2

(36)

69.41***

Wald χ2 (60) 157.14***

Notes: The reference category is non-adoption (IMP0ROW0). IMP1ROW0— only
DTM variety; IMP0ROW1— only row planting. The Mundlak device was in-
corporated in the estimation but the variables (mean of the time-varying ex-
planatory variables) are not presented in the interest of brevity.

Table 4
Impact of CSA on yield and food security.
Source: Authors computation based on IITA-IFPRI panel survey, 2018.

Outcome variables Technology choice Adoption status Average treatment effect on treated

Adopters Non-adopters

Maize yield (kg/ha) IMP1ROW0 927.14 (55.26) 804.74 (95.13) 122.40* (91.82)
IMP0ROW1 1098.16 (36.71) 827.66 (57.39) 270.50*** (66.39)

Sales intensity IMP1ROW0 1.62 (0.02) 1.54 (0.03) 0.09***(0.03)
IMP0ROW1 1.68 (0.02) 1.55 (0.02) 0.13*** (0.02)

Own consumption per AEU IMP1ROW0 1.57 (0.04) 1.57 (0.02) −0.00 (0.04)
IMP0ROW1 1.56 (0.03) 1.67 (0.03) −0.11*** (0.03)

Notes: The reference category is non-adoption (IMP0ROW0); IMP1ROW0— adoption of only DTM maize varieties; IMP0ROW1— only row planting; AEU refers to adult
equivalent unit. The values in parentheses are standard errors. The mean values of yield, intensity of commercialization, and own consumption for the non-adoption
category are 1094.78 kg/ha, 0.68, and 0.58 respectively.
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impacts of CSA using a recent panel data from Ghana. We employ a
multinomial endogenous switching regression model to correct for en-
dogeneity and selection bias in the choice of CSA.

Our results suggest that adoption of DTM varieties is generally high
over the period of study but the adoption of row planting decreased for
the same period. In promoting CSA among smallholder farmers, key
factors to consider include gender, years of formal education, distance
to farm plots, fertilizer use, inter-cropping, assets ownership, and access
to extension services. Our results further showed that adoption of CSA
increases maize yields and intensity of maize commercialization but
decreases own consumption per AEU. In terms of heterogeneity effect,
we find evidence of higher effect of adoption of row planting on maize
yield, commercialization intensity and own consumption per AEU re-
lative to the adoption of only DTM varieties. However, the study is
limited in identifying whether a decrease in own consumption increases
consumption of food away from home and non-food expenditures.

Our results provide valuable information about the choice of CSA
that can benefit smallholder farmers taking into consideration the re-
source constraints they face. However, these gains may be consolidated
when the gender inequality gap in terms of access to technology is
addressed coupled with increasing the visibility of agricultural tech-
nologies through extension agents. From policy perspective, farmers

must be encouraged to use row planting as a strategy to increase
agricultural performance and welfare outcomes. This can be achieved
by using extension agents to create awareness coupled with farmer
trainings programs. Furthermore, adoption of CSA have the tendency to
increase household food diversification due to the decrease in own
consumption per AEU.

Although this study is informative, lack of data on other CSA and
the short panel of the data-set limits detail analysis of the variation in
the use of CSA. We are unable to conduct a benefit cost analysis that
will inform policy-makers on which of the choices of CSA is more
economically rewarding and cost-effective. Second, the study will
benefit much from using the area under each of the practices as in-
tensity measurement relative to count measurement. Third, establishing
the relationship between adoption of CSA and own consumption and
food purchases to supplement household nutrition requirement is key.
These remain for the future.
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Appendix A

Table 5
Robustness checks on welfare effects of adopting CSA.

Instrumental Variable Fixed Effects

Choices of CSA Maize yield Sales intensity Own consumption

IMP1ROW0 403.34** 0.19*** −0.73**
(176.65) (0.03) (0.36)

IMP0ROW1 342.14*** 0.04*** −0.95*
(3.05) (0.01) (0.57)

Note: Robust standard errors are in parentheses. The mean values of yield,
intensity of commercialization, and own consumption for the non-adoption
category are 1094.78 kg/ha, 0.68, and 0.58 respectively.

Table A1
Test of the validity of the instrument (falsification test).

Panel A Maize yield†

IMP0ROW0 IMP1ROW0 IMP0ROW1

(1) (2) (3)

Extension contact farmer −0.087 (0.173) 0.079 (0.095) −0.052 (0.187)
Farmer contact extension −0.196 (0.196) 0.055 (0.096) 0.104 (0.174)
Distance to extension (log) – −0.002 (0.002) 0.002 (0.001)
F-values F(2, 101)= 0.75 F(3, 339)= 0.79 F(3, 70)= 0.67

Sales intensity†
Panel B IMP0ROW0 IMP1ROW0 IMP0ROW1

(1) (2) (3)
Extension contact farmer 0.034 (0.034) −0.021 (0.019) −0.049 (0.042)
Farmer contact extension 0.006 (0.037) 0.022 (0.019) −0.009 (0.039)
Distance to extension (log) −0.001 (0.002) −0.000 (0.00) 0.000 (0.000)
F-values F(3, 113)= 0.49 F(3, 340)= 0.70 F(3, 70)= 1.16

Own consumption†
Panel C IMP0ROW0 IMP1ROW0 IMP0ROW1

(1) (2) (3)
Extension contact farmer 0.072 (0.052) 0.014 (0.038) 0.111 (0.083)
Farmer contact extension – 0.014 (0.038) 0.003 (0.078)
Distance to extension (log) – – −0.001 (0.001)
F-values F(1, 115)= 1.93 F(2, 341)= 0.18 F(3, 70)= 1.25

Notes: IMP0ROW0 is the reference category. † indicate variables expressed in natural logarithm. Standard errors are in parentheses.
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Appendix B. Supplementary data

Supplementary material related to this article can be found, in the online version, at doi:https://doi.org/10.1016/j.landusepol.2020.104622.
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Table A2
Descriptive statistics by survey year and adoption status.
Source: Authors estimation based on IITA-IFPRI panel survey, 2018.

Variable 2013 2018

IMP0ROWo IMP1ROW0 IMP0ROW1 IMP0ROWo IMP1ROW0 IMP0ROW1

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD.

Yield 1144 1077 1200 983 1332 1028 961 552 1160 1690 1301 1169
Sales intensity 0.67 0.32 0.77 0.24 0.75 0.25 0.70 0.36 0.61 0.32 0.54 0.31
Own consumption 0.55 0.67 0.63 0.68 0.47 0.44 0.64 0.84 0.70 0.95 1.03 1.05
Age 45.2 13.6 44.4 11.8 44.6 11.9 48.0 12.0 50.8 10.9 47.5 11.5
Education (years) 4.7 4.9 5.4 4.8 6.2 5.0 3.1 4.9 4.2 5.4 4.8 5.9
Nativity 0.7 0.5 0.6 0.5 0.6 0.5 0.4 0.5 0.6 0.5 0.7 0.5
Household size 9.7 6.2 9.0 7.1 8.7 6.2 6.0 6.9 9.1 8.9 10.0 4.2
Intercropping 0.6 0.5 0.6 0.5 0.4 0.5 0.1 0.2 0.1 0.3 0.0 0.2
Plot distance 43.2 40.3 47.4 38.3 37.6 33.3 28.4 35.7 43.6 35.3 33.9 40.4
Owns land 3.3 2.0 3.3 1.7 3.5 1.8 1.7 1.8 3.1 1.4 3.0 1.6
Plot size 1.6 1.3 1.9 2.2 1.6 1.8 1.4 1.0 1.9 2.3 1.7 1.9
Land slope 0.4 0.5 0.4 0.5 0.4 0.5 0.6 0.5 0.3 0.4 0.4 0.5
Used fertilizer 0.2 0.4 0.3 0.5 0.5 0.5 0.4 0.5 0.4 0.5 0.8 0.4
Model farmer 0.3 0.4 0.2 0.4 0.2 0.4 0.0 0.0 0.1 0.2 0.1 0.3
Fertilizer use (years) 1.5 3.1 2.0 3.6 3.1 3.4 2.7 4.1 2.6 4.2 6.6 6.5
Owns bicycle 0.4 0.5 0.5 0.5 0.5 0.5 0.7 0.4 1.0 0.2 1.0 0.2
Owns motor 0.2 0.4 0.2 0.4 0.2 0.4 0.7 0.4 1.0 0.2 1.0 0.2
Owns sprayer 0.5 0.5 0.6 0.5 0.7 0.5 0.7 0.4 0.9 0.3 1.0 0.2
Distance to extension 19.5 68.8 8.0 8.2 10.3 12.0 5.1 7.6 8.9 13.7 7.0 6.2
Member of FBO 0.2 0.4 0.3 0.5 0.2 0.4 0.4 0.5 0.3 0.5 0.5 0.5
Contact extension 0.1 0.3 0.2 0.4 0.3 0.4 0.5 0.5 0.3 0.5 0.7 0.5
Extension contact 0.3 0.5 0.5 0.5 0.5 0.5 0.6 0.5 0.4 0.5 0.8 0.4

Notes: The reference category is non-adoption (IMP0ROWo). IMP1ROW0— only improved maize varieties; IMP0ROW1—only row planting; SD refers to standard
deviations.

Table A3
Unconditional average effects of adoption of CSA on yield and food security.
Source: Authors computation based on IITA-IFPRI panel survey, 2018.

Outcome variables Technology Adoption status Unconditional

choice Adopters Non-adopters average effect

Maize yield (kg/ha) IMP1ROW0 1115.67 (31.67) 871.44 (29.62) 244.23*** (36.63)
IMP0ROW1 1109.63 (18.96) 871.44 (29.62) 238.19*** (31.63)

Sales intensity IMP1ROW0 1.68 (0.01) 1.58 (0.01) 0.10***(0.01)
IMP0ROW1 1.68 (0.01) 1.58 (0.01) 0.10*** (0.01)

Own consumption per AEU IMP1ROW0 1.68 (0.02) 1.62 (0.01) 0.06 (0.11)
IMP0ROW1 1.57 (0.03) 1.62 (0.01) −0.05** (0.02)

Notes: The reference category is non-adoption (IMP0ROW0); IMP1ROW0— only DTM varieties; IMP0ROW1— only row planting. AEU refers to adult equivalent unit.
The mean values of yield, intensity of commercialization, and own consumption for the non-adoption category are 1094.78 kg/ha, 0.68, and 0.58 respectively.
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