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West Africa is faced with significant challenges from climate

change, including parts of the region becoming hotter with

more variable rainfall. The Sahelian region in particular is

already subject to severe droughts. To address this better

adapted crop varieties (such as for cowpea) are clearly a central

element, a complementary one is a greater use of resilient

alternative crops especially underutilized legumes particularly

Bambara groundnut, African yam bean, winged bean and

Kersting’s groundnut. Genetic diversity of these crops

conserved in genebanks and farmer’s field provides an

opportunity to exploit climate resilient traits using cutting-edge

genomic tools and to use genomics-assisted breeding to

accelerate genetic gains in combination of rapid cycle breeding

strategy to develop climate-resilient cultivars for sub-Saharan

Africa.
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Introduction
Recent studies and simulation reports predict 2–4�C
increase in temperature by the late 21st century [1,2] and

that will reduce the global yield of all major crops [3,4]. An

IPCC-2012 [5] report of summary for policymakers states

that African agriculture faces rising temperature and more

risky weather due to climate change. Thus, climate change

is likely to have a significant negative impact on agriculture

as well as on livelihoods and food security in sub-Saharan

Africa. West Africa and parts of southern Africa, particularly

Zambia and Zimbabwe, show rapid and statistically signifi-

cant decreases in precipitation [1]. The Sahelian region, in

particular, is already subject to severe drought. Top six key

staple crops of SSA are rice, cassava, sorghum and grain
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legumes/pulses,alongwithmaizebasedonproduction,area

harvested and yield [6]. Nodulated legumes have been

cultivated by indigenous peoples in Africa for centuries,

but their full potential has never been realized [7]. Cowpea

is the only indigenous legumes crop, which is a traded

commodity and grown in large areas throughout the Africa,

majority from West Africa.There are other African legumes

includes Bambara groundnut, African yambean and Ker-

sting’s groundnut part of a group known as orphan legumes

or underutilized legumes, which are grown by poor small-

holder farmers. These are well-adapted to the many soils

and climatic conditions of Africa, in particular, drought and

low soil fertility [7]. However, despite its relatively high

tolerance to drought, considerable reduction in cowpea

yield has been reported due to prolonged drought periods

insub-Saharan Africa [8,9].All these legumecropsnodulate

and fix nitrogen, with varying degrees of effectiveness and

using a range of bacterial symbionts. Advanced breeding

efforts toimproveyieldandclimateresilienttraits including

quality are constrained by a low level of genetic diversity in

breeding programmes. The Genetic Resources Center

(GRC)oftheInternationalInstituteofTropicalAgriculture

(IITA) conserve the world’s largest collection of cowpea,

Bambara groundnut, African yambean and a small collec-

tion of winged bean and Kersting’s groundnut. The genetic

diversity of these crops has not been fully explored and

utilized in active breeding programmes. With recent

advances in genomics, large germplasm collection can be

characterized genome-wide to identify single nucleotide

polymorphism (SNP) markers and superior alleles/haplo-

types through NGS based sequencing approaches and SNP

markers can be used in genomics-assisted breeding (GAB)

together with precise phenotyping can be deployed to

improve genetic gain for complex climate resilient traits.

RobustGABapproachescanbeutilized inanyseasonorany

stage of plant growth [10]. Limited efforts have been made

towards GAB in cowpea and any other orphan legumes

compared with chickpea, pigeon pea, groundnut and soy-

bean [11–13]. GAB approach can play an important role to

accelerate genetic gain of climate resilient traits by devel-

oping improved cultivars which can mitigate climate

change to meet the target demands of food production of

SSA region.

In this review, we summarize the likely climate change

impacts in West Africa and applications of genetic and

genomic information together with precision phenotyping

in the breeding of legumes for this region. We focus on

genetic resources available and future production potential
es in West Africa under climate change, Curr Opin Plant Biol (2020), https://doi.org/10.1016/j.
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of cowpea, African yam bean, Bambara groundnut, winged

bean and Kersting’s groundnut.

Climate change in West Africa
Because of climate change, majority of countries in Africa

will experience novel climates over at least half of their

current crop area by 2050 [14]. Climate change especially

temperature and precipitation have immediate effects on

crop production and food security globally and in Africa

[1,15–20]. Already relatively strong future climate change

signalhasbeen projectedfor theAfricancontinent, [17] that

will highly impact this continent due to two reasons; 1) its

geographical characteristics with the majority of land in

warming tropics, and 2) relatively limited capacity to adapt

to climate effects [1,21]. There have been few models of

futureclimatescenariosforWestAfricancrops.However, in

recent years a number of studies give insights into past

trends. Girvetz et al. [1] in Coupled Model Intercomparison

Project Phase 5 (CMIP5) suggested that temperature

increases for Africa with the current emissions trajectory

(i.e. RCP 8.5) is 1.7�C by the 2030s, 2.7�C by the 2050s, and

4.5�C by the 2080s using GCM model. Modeling of future

precipitation is very difficult [22,23]. The median of the

CMIP5 models indicates that by 2050, under the higher

emission scenario (RCP 8.5), annual precipitation will

increase across much of eastern and central Africa, while

decreasing across parts of southern, western and northern

Africa [1]. Sylla et al. [24] note that ‘it is thus evident that in a

‘business as usual’ world, most countries in West Africa will

have to cope with shorter rainy seasons, generalized torrid,

arid and semi-arid conditions, longer dry spells and more

intense extreme precipitations’. Projected climate change

indicates continuous and stronger warming (1.5–6.5�C) and

awider rangeofprecipitationuncertainty (roughlybetween

�30 and 30%) larger in the Sahel and increasing in the

farther future [24]. Barry et al. [25��] analyzed trends for the

50yearsfrom1980in14WestAfricancountries.Theyfound

‘statistically significant increases of 0.16�C/decade and

0.28�C/decadeformeanannualmaximumandmeanannual

minimum temperatures, respectively. Moron et al. [26] also

observed similar linear trends of annual mean maximum

and minimum temperature equal respectively +0.021�C/
year and +0.028�C/year using a network of 90 in situ obser-

vation in West Africa. Several studies conclude that benefit

of elevated CO2 will be greater for C3 crops (e.g. soybean

groundnut) that accumulate more biomass and for C4 crops

in arid regions with increased water use efficiency [27–29].

However, both Sultan et al. [28] and Deryng [30] also

showed that it partially offsets the impacts from climate

changesespecially in the Western part of Africa where yield

losses are expected even after accounting for CO2 fertiliza-

tion effect. A meta-database of future crop yields, built up

from 16 studies database, was used to provide an overall

assessment of the potential impact of climate change on

yields. They found that despite a large dispersion of yield

changes ranging from �50% to +90%, the median was a

yield loss near �11%in thirteen major staples crops (cotton,
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groundnut, maize, millet, rice, sorghum, soybean, wheat,

yams, Bambara groundnut, beans, cassava, cowpea) of Afri-

can continent including West Africa [31��]. Ramirez-Ville-

gas and Thornton [32] found that humid and West African

countries (including thoseacross theSahel) areamongst the

most negatively impacted, with mean production losses

between 20 �and 40% by 2050s (RCP8.5). They also

projected that the majority (�90 %) of currently cropped

maize area of African continent will experience negative

impacts, with production reductions in the range 12–40%.

However, Sorghum, cassava, yam and pearl millet show

either little area loss or even gains in suitable area, whereas

commonbean,maize,bananaandfingermilletareprojected

to reduce their suitable areas significantly (30–50%). Maize

cultivation across Africa could mitigate 31% of yield losses

attributable to water stress [33]. West African regional

average yield reductions were projected 10–20% for millet

and 5–15% for sorghum in the two crop models [34]. Using

time series data on rainfall, production and other weather

and agronomic data for Niger, Mohamed et al. [35] and

Vanduivenbooden et al. [36] argue that by 2025 climate

changemightlowermilletyieldsby13%,groundnutsby11–

25% and cowpeas by 30%, while Butt et al. [37] projected

thatby2030climatechangemightlowermaizeyieldsby22–

25%, groundnuts by 21–22%, sorghum by 21–24 % and

cowpeas by 22–24 % in Sikasso regions (north, west and

central) of Mali. Under climate change scenario GISS A2

2080, Bambara groundnut (orphan African legume), yields

were almost trebled (37.1% increase above that for sowing

datealone(12.9%))dueto increaselengthofgrowingperiod

and the positive effects of higher CO2 concentrations [38].

Overall mostly research effort in crop modeling were have

been focusedon theworld’s major food crops suchas wheat,

maize, rice and sorghum and the simulation of crops com-

mon in African farming systems (sorghum, millets, cassava,

yam) is less well developed as well as simulations of crops

grown as intercrops across Africa [39,40] including cowpea

andotherorphanlegumecrops.Fromthesestudies, itseems

clear that the effects of climate changes will be marked

particularly in the Sahelian region where options for small-

holder farmers are already constrained. There is an estima-

tion that over 30%of thearea wheremaize is grownandover

60% of the area where beans are grown would need to grow

entirely different crops by the end of the century [41]. New

alternative crop varieties well suited to the future climatic

conditions are required [14] for future food security in the

SSA. Alternative crops for African continent could be

approached by extending the crop diversification which

iscurrentlydependingonfewmajorcropsof theworld.This

extended crop diversification could include enhanced the

use of ‘orphan crops’ (also known as ‘minor crops’,

‘underutilized plant species’, ‘neglected crops’ and ‘future

foods’) which are rich in vitamins, essential minerals and

other micronutrients important for healthful diets [42] and

also climate resilient [43–46]. Alternative legume crops

could also be used as intercrop with other crops like maize,

cassava, sorghum and millet to avoid complete crop failure.
es in West Africa under climate change, Curr Opin Plant Biol (2020), https://doi.org/10.1016/j.
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So, there is an urgent need to focus on both adaptation of

major crops and development of alternatives that may help

develop more climate resilient and nutritious food produc-

tion systems. Another dimension is the likely change in

distribution and severity of pests and diseases. These are

already significant causes of yield loss in the staple crops of

the region particularly cowpea as shown below.

Cowpea
Cowpea (Vigna unguiculata) is one of the most economically

important indigenous African food legume crops which

provides an affordable source of essential nutrients and

low-cost protein [47,48] to millions of people and also

quality fodder for livestock in the dry savannas of tropical

sub-Saharan Africa (SSA). This crop is widely grown in SSA

with around 12.5 million hectares produced mainly in the

drysavannahstotheSahelinthefringesoftheSaharaDesert

with annual rainfall of about 300 mm or even less [49] due to

its ability to survive in arid and semi-arid conditions with a

tropical climate, low fertility soil and soil fertility enrich-

ment using nitrogen-fixation.

Genetic resources
The Genetic Resources Center (GRC) of the Interna-

tional Institute of Tropical Agriculture (IITA) has the

largest cowpea collection of over 15 003 accessions and

2500 accessions of wild Vigna species collected from

about 89 countries across the globe, a key legume of

the savannah and Sahelian regions of West Africa. A core

collection of 2062 accessions covering most of the diver-

sity existing in the entire collection at IITA has been

defined using 28 agronomic and botanical descriptors for

the grouping of accessions which covered a wide range of

phenotypic variation among the collection. A mini-core

collection of 370 has also been developed as well as

further set of about 200 accessions derived from a

Focused Identification of Germplasm Strategy (FIGS)

which allows the selection of a trait based sub-set of

germplasm for heat and drought tolerance. This subset

will be tested by breeders in sub-Saharan Africa and

elsewhere. A multi-parent advanced generation inter-

cross (MAGIC) population of 305 lines for cowpea has

been developed [50��] from eight founder parents that

were genetically diverse and carried many abiotic and

biotic stress resistance, seed quality and agronomic traits

relevant to cowpea improvement in the United States

and SSA. The MAGIC populations are an emerging type

of genetic resource for dissecting the genetic structure of

traits and improving breeding populations. A number of

advances in cowpea genomics have been made including

development of genetic linkage maps, an improved

consensus genetic linkage map, MAGIC population

and identification of quantitative trait loci associated

with desirable traits such as resistance to Striga, Macro-
phomina, Fusarium wilt, bacterial blight, root-knot nema-

todes, aphids, foliar thrips and heat and drought stress

[50��]. Several cowpea breeding programs have been
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initiated with available genetic resources at IITA to

implement molecular breeding, especially for marker-

assisted recurrent selection (MARS) and marker-assisted

backcrossing (MABC) populations, to accelerate cowpea

variety improvement in SSA region [51,52]. Recently,

the cowpea reference genome has been published [53��]
which will provide opportunities for improving our

understanding of the history of cowpea domestication,

how to link genomic information between gene to trait

and to accelerate crop improvement. The combination of

advanced bioinformatics tools and accessible genome-

wide profiling (DNA or RNA) have greatly enhanced our

understanding of crop genome and marker/gene to trait

association. Both mini-core set and FIGS population of

cowpea at GRC, IITA have been genotyped using high-

throughput DArTseq-GBS (genotype-by-sequencing),

SNP (single nucleotide polymorphism) and in silico
markers (presence/absence) to get detailed genome-

wide genetic diversity information, population structure

and QTL/gene discovery with marker-trait association

analysis for genomics-assisted breeding (GAB) research.

Similarly, a core set of 305 lines (F8 generation) of

cowpea MAGIC population also has been genotyped

with 51 128 SNPs using the Illumina Cowpea Consor-

tium Array [54] and used for marker-trait association

analysis for different agronomical and morphological

traits such as photoperiod sensitivity, flowering, matu-

rity, seed size and yield. More than twenty-four IITA

cowpea varieties were released from 2008 to 2017 in

13 different countries to improve yield in sub-Saharan

Africa. There is need to have focus to do genotyping of

cowpea core-collection as well as whole conserved col-

lection of cowpeas at GRC-IITA to explore untapped

genetic diversity which can be key factor for future

breeding to develop climate resilient cultivars.

Nutrition
Cowpeaisa richsourceofphytonutrientswhich make itone

of the most suitable African indigenous crops in aspects of

nutritional balanced diet and solving malnutrition crisis

among the resources-constrained household in SSA [55–

57]. A nutritional study of 1541 cowpea germplasm lines

revealed that on average cowpea has 25% protein and ca.

38 mgZn/kg,53 mgFe/kg,1.9 gMg/kg,0.825 gCa/kg,5 g P/

kg,and15 g K/kg[57]. Jemo etal. [58] reported that nitrogen

fixation was significantly reduced in soils with low P levels

andlimitedwatersupply.Cowpeacanplayagreatroleinsoil

fertility enrichment by adding 70–350 kg nitrogen per ha

[58] through nitrogen fixation. There is limited research

done for QTL discovery of nutritional traits. At the same

time,itneedsmoreattentiontodogenomicsresearchforthe

nutrition traits of cowpea that will help sustain the nutri-

tional security of SSA regions.

Yield constraints
Bothbioticandabiotic stressesaresignificantyield-limiting

constraints in cowpea. Africa contributed over 87% cowpea
es in West Africa under climate change, Curr Opin Plant Biol (2020), https://doi.org/10.1016/j.
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production in total word cowpea production 7.7 K tonnes

[59]withover80%ofAfricanproduction inWest Africa.But

the average productivity of SSA farmer’s fields is less than

600 kg/ha compared with a potential grain yield over

2000 kg/ha [49]. This average yield productivity can be

further reduced in climate change scenario especially in

SSA regions. The integrated breeding efforts for increasing

yield in SSA has been initiated by IITA through enhancing

the resistance potential of cowpea for its yield constraints

both biotic, abiotic stresses and for yield attributive traits

using both conventional and molecular approaches. Several

efforts havebeen made on cowpea to develop many linkage

maps, recombinant inbred line (RIL) population, Multi-

parent advanced generation inter-cross (MAGIC) popula-

tion to identify QTLsfor thedesirable traits. Several efforts

have been made to identify QTL for many desirable traits

using bi-parental mapping population, back-cross mapping

population, and natural population for genome-wide asso-

ciation study (GWAS) in cowpea. The detail of the identi-

fiedQTLsofseveral traitsofcowpeahasbeenmentionedin

Table 1, which could be useful for genomic-assisted breed-

ing to develop improved cowpea under climate change.

Biotic stresses

Insects and other pest are the major limiting factor which

affects cowpea yield in SSA throughout the crop cycle,

among them aphids (Aphis craccivora Koh) at seedling stage

[60] flower thrips (Megalurothrips sjostedtiTrybom),podborer
(Maruca vitrata Fab.) and pod sucking pest (Clavigralla
tomentosicollis Stal) after flowering stage are important pest

in tropical Africa [60,61]. The QTL for aphid and foliar

thrips tolerance have been identified in [62,63], while

another new source of aphid resistance found in wild rela-

tive lines TVNu-1158 [49]. Besides pest, cowpea is also

susceptible for diseases which caused by virus, fungi, bac-

teriaandnematodes.Bacterialblight (Xanthomonas sps)and
anthracnose and brown blotch (Colletotrichum sps) are main

bacterial and fungi disease in cowpea, while root-knot

nematodes (Meloidogyne sps.) damage cowpea root-system

and cause yield reduction in different cowpea production

areaofAfrica.Inhighlysusceptiblelinegrowninmonocrops

with severe disease attack can cause yield reduction of 30–

50% [64]. Several viruses affect cowpea yield but among

them cowpea aphid-borne mosaic potyvirus (CABMV) is

most problematic and reduced yield up to 60% [65]. The

candidate genes and QTL have been reported for different

disease stresses in cowpea such as identify bacterial blight

[66], fusarium wilt race three and race four [67,68], charcoal

rot resistance [69] and cowpea golden mosaic virus [70].

Striga gesnerioides and Alectra vogelii are two parasitic weeds

inwhichStriga ismainlypresent inthedrysavannah areasof

West and Central Africa while Alectra is found predomi-

nantly in eastern and southern Africa [49]. Yield reduction

was reported from 73 to100% byStriga infestations inAfrica

[71]. Striga resistance gene race one and race three have

beenmappedby molecularmarkers [72,73] andare inuse to

improve striga resistance in cowpea breeding.
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Abiotic stresses

Abiotic stresses are a major cause of yield-loss to agricul-

ture crops worldwide because different vegetative, phys-

iological, reproductive plant attributes including the seed

development process affected by these stresses from

seedling to crop maturity. Vogel et al. [74��] found that

growing season climate factors including mean climate as

well as climate extremes explain 20%–49% of the variance

of yield anomalies (the range describes the differences

between crop types), with 18%–43% of the explained

variance attributable to climate extremes, depending on

crop type. It is true cowpea is relatively tolerance to

drought and salt stress [75] but unpredictable rainfall in

the beginning and towards the end of the rainy season, a

common phenomenon, in the semi-arid tropics where

cowpea is mostly grown in SSA [49]. In cowpea, tempera-

ture about 35�C can cause yield reduction by aborting

pollen in flowering stage and also by affecting seed devel-

opment during grain filling period. A set of 190 drought

tolerance were identified from 1200 accessions under

terminal drought screening in field trial [76]. The QTL

has been identified for drought-induced senescence [76]

senescence [77] and heat tolerance [78] in cowpea. The

QTL for early flowering [77] and maturity [69] have been

detected. Lines that are early flowering and maturity can

be used for escaping damage by flower/pollen abortion as

well as flower/pod feeding insect and abiotic stresses

namely terminal heat and drought stress. Goufo et al.
[79] studied the mechanisms by which cowpea modifies

its metabolism to meet the demands of diverse resistance

functions when exposed to water deficit appear to be

determined by the interplay between the shikimate and

arginine/proline pathways, giving rise to three drought-

responsive metabolites, namely proline, galactinol and

quercetin 3-O-600-malonylglycoside. Cowpea genomic

region jointly associated with these pathways and investi-

gating their co-localization with quantitative trait loci in a

larger population may indicate promising candidate for

drought tolerance. Out of nine candidate reference genes

of abiotic stresses used in qPCR validation activities in

cowpea, the candidate genes UNK, VuACT and UE21D
were most stable under root dehydration stress, while the

candidate genes UNK, UE21D and FBOX were the most

stable genes for salt stress [80]. These candidate gene

results may guide future research on gene expression in

cowpea under other abiotic stress.

Another genomic approach known as genomic selection

(GS) offers simultaneous selection of thousands of SNP

genome-widelytoensurethatallgenesareexpectedtobein

linkage-disequilibrium (LD) with at least some of the SNP

markers [81,82]. Because GS can capture small-effect QTL

which governing the majority of phenotypic variation,

including epistatic interaction effects [83], it could play

an important role in cowpea breeding to increase genetic

gain and accelerate plant breeding cycles for complex

quantitative traits of biotic and abiotic stresses.
es in West Africa under climate change, Curr Opin Plant Biol (2020), https://doi.org/10.1016/j.
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Table 1

QTL detected by using different mapping population for cowpea traits

S.

No

Traits Population name Type Marker

type

markers/

QTLs

Linkage

group

(LG)/

Chromosome

(Chr)

R2 % References

1 Domestication-

related traits

(JP81610 � JP89083) �
JP81610

BC1 F1 SSR 1-11 for

most

traits

LG3,7,8,11 3–57% Kongjaimun et

al. [149]

2 Seed Pattern One MAGIC population

(SuVita-2, CB27, IT93K-

503-1, IT89KD-288, IT84S-

2049, IT82E-18, IT00K-

1263, IT84S-2246); four

RIL California Blackeye-27

x IT82E-18; California

Blackeye-27 x IT97K-556-

6; California Blackeye-46 x

IT93K-503-1; 524B x

IT84S-2049); Three F2

populations (California

Blackeye-27 x Bambey 21,

Bambey 21 x California

Blackeye 50, Tvu-15426 x

MAGIC014)

Multi-parent

advanced

generation inter-

cross (MAGIC)

population, four

RIL and three F2

populations

SNP 3 Chr7, 9, 10 Herniter et al.

[150]

3 Maturity IT93K503–1 � CB46 RIL AFLP 2 LG7, 8 25–29% Muchero et al.

[69]

4 Hastate leaf shape Sanzi � Vita 7 RIL SNP 1 LG15 74.70% Pottorff et al.

[151]

5 Flower and seed coat

color

ZN016 � Zhijiang 28-2 RIL SNP &

SSR

1 each LG8 Xu et al. [152]

6 Time of flower

opening

524 B � 219-01 RIL SSR 5 LG1 9–30% Andargie et al.

[153]

7 Days to flower 524 B � 219-01 RIL SSR 3 LG1 Andargie et al.

[153]

8 Days to first flowering ZN016 � ZJ282 RIL SNP 3 LG3,10,11 10–32% Xu et al. [77]

9 Nodes to first flower ZN016 � ZJ282 RIL SNP 4 LG2,4,6,11 11–22% Xu et al. [77]

10 Floral scent

compounds

524 B � 219-01 RIL SSR 63 LG1,2,4 60% Andargie et al.

[154]

11 Pod tenderness (JP81610 � JP89083) �
JP81610

BC1F1 SSR 3 LG7,8,11 6–50% Kongjaimun et

al. [155]

12 Pod tenderness JP81610 � JP89083 F2 SSR 2 LG7, 8 6–45% Kongjaimun et

al. [155]

13 Root architecture natural germplasm GWAS population SNP 32 LG1,2,3,4,5,

6,7,8,910,11

Burridge et al.

[156]

14 Flowering time (days)

under long day length

at UCR-CES

inter cross of eight parents

(SuVita-2, CB27, IT93K-

503-1, IT89KD-288, IT84S-

2049, IT82E-18, IT00K-

1263, IT84S-2246)

Multi-parent

advanced

generation inter-

cross (MAGIC)

SNP 4 Chr4,5,9,11 8.8–15.3% Huynh et al.

[50��]

15 Flowering time (days)

under short day

length at CVARS

inter cross of eight parents

(SuVita-2, CB27, IT93K-

503-1, IT89KD-288, IT84S-

2049, IT82E-18, IT00K-

1263, IT84S-2246)

Multi-parent

advanced

generation inter-

cross (MAGIC)

SNP 4 Chr1,4,5,9 8.8–13.3% Huynh et al.

[50��]

16 Growth habit at UCR-

CES

inter cross of eight parents

(SuVita-2, CB27, IT93K-

503-1, IT89KD-288, IT84S-

2049, IT82E-18, IT00K-

1263, IT84S-2246)

Multi-parent

advanced

generation inter-

cross (MAGIC)

SNP 2 Chr1,9 9.4-10.1% Huynh et al.

[50��]

17 Growth habit at

CVARS

inter cross of eight parents

(SuVita-2, CB27, IT93K-

503-1, IT89KD-288, IT84S-

2049, IT82E-18, IT00K-

1263, IT84S-2246)

Multi-parent

advanced

generation inter-

cross (MAGIC)

SNP 1 Chr1 21.60% Huynh et al.

[50��]
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Table 1 (Continued )

S.

No

Traits Population name Type Marker

type

markers/

QTLs

Linkage

group

(LG)/

Chromosome

(Chr)

R2 % References

18 Maturity (days) at

CVARS under normal

irrigation

inter cross of eight parents

(SuVita-2, CB27, IT93K-

503-1, IT89KD-288, IT84S-

2049, IT82E-18, IT00K-

1263, IT84S-2246)

Multi-parent

advanced

generation inter-

cross (MAGIC)

SNP 1 Chr5 11.80% Huynh et al.

[50��]

19 Maturity (days) at

CVARS under

restricted irrigation

inter cross of eight parents

(SuVita-2, CB27, IT93K-

503-1, IT89KD-288, IT84S-

2049, IT82E-18, IT00K-

1263, IT84S-2246)

Multi-parent

advanced

generation inter-

cross (MAGIC)

SNP 3 Chr2,5,9 8.9–10% Huynh et al.

[50��]

20 Seed size 524B � 219-01 RIL SSR 6 LG1, 10 9–19% Andargie et al.

[157]

21 Pod fiber layer

thickness

524B � 219-01 RIL SSR 4 LG1, 10 6–17% Andargie et al.

[157]

22 Pod length (JP81610 � TVnu457) �
JP81610

BC1 F1 SSR 9 LG1,2,3,4,5

,7,8,9,11

31 Kongjaimun et

al. [158]

23 Seed weight IT2246-4 � TVNuI963 F2 RFLP 2 LG2, 6 37–53% Fatokun et al.

[159]

24 Seed weight 524B � 219-01 RIL SSR 6 LG1,2,3,10 8–19% Andargie et al.

[157]

25 Pod number per plant ZN016 � ZJ282 RIL SSR 3 LG2,3,4 11–20% Xu et al. [160]

26 Seed size Eight different populations RIL SNP 10 LG2,5,67,8,10 47% Lucas et al.

[161]

27 Seed weight Natural population GWAS meta-

analysis

SNP 13 LG3,4,5,6,

8,10,11

Lo et al. [162]

28 Seed weight Natural population GWAS meta-

analysis

SNP 1 LG3 7% Lo et al. [162]

29 Seed weight Natural population GWAS meta-

analysis

SNP 3 LG2,8,11 7–22% Lo et al. [162]

30 Seed size (g/100

seeds) at CVARS

inter cross of eight parents

(SuVita-2, CB27, IT93K-

503-1, IT89KD-288, IT84S-

2049, IT82E-18, IT00K-

1263, IT84S-2246)

Multi-parent

advanced

generation inter-

cross (MAGIC)

SNP 2 CHr6,8 10.1–27% Huynh et al.

[50��]

31 Pod shattering JP81610 � TVnu-457 F2:3 SSR 1 LG7 32.12% Watcharatpong

et al. [163]

32 Striga resistance TVx 3236 � IT82D-849 F2 AFLP 3 LG1 Oue’draogo et

al. [164]

33 Striga resistance Tvu 14676 � IT84S-2246–4 F2 AFLP 6 LG1 Oue’draogo et

al. [164]

34 Striga resistance Tvu14676; TVx 3236 �
IT82D-849

F2 SCAR (61R

& 61R-M2)

2 LG1 Oue’draogo et

al. [165]

35 Striga resistance IT93 K-693-2 � IAR1696;

T93K-693-2 x Kamboinse

local

F2 AFLP/

SCAR

4 Same

linkage

group

Boukar et al.

[72]

36 Striga resistance Gorom x Tvx 3236 F2 AFLP 7 Oue’draogo et

al. [166]

37 Striga resistance TVx 3236 � IT82D-849 F2 AFLP 5 Oue’draogo et

al. [166]

38 Cowpea golden

mosaic virus

IT97K-499-35 � Canapu

T16

F2 AFLP 3 Same

linkage

group

Rodrigues et al.

[70]

39 Cowpea bacterial

blight resistance

DanIla � TVu7778 RIL SNP 3 LG3, 5, 9 10–22% Agbicodo et al.

[66]

40 Charcoal rot

resistance

IT93 K-503-1 � CB46 RIL SNP/AFLP 9 LG2,3,5,6,11 8–40% Muchero et al.

[69]

41 Fusarium wilt

resistance

(For race 3)

CB27 � 24-125B-1 RIL SNP 1 LG6 28% Pottorff et al.

[68]

42 Fusarium wilt

resistance

(For race 4)

IT93K-503-1 � CB46, RIL SNP 1 LG8 19–47% Pottorff et al.

[67]
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Table 1 (Continued )

S.

No

Traits Population name Type Marker

type

markers/

QTLs

Linkage

group

(LG)/

Chromosome

(Chr)

R2 % References

43 Fusarium wilt

resistance (For race

4)

CB27 � 24-125B-1 RIL SNP 1 LG9 32–40% Pottorff et al.

[67]

44 Fusarium wilt

resistance (For race

4)

CB27 � IT82E-18 RIL SNP 1 LG3 18–27% Pottorff et al.

[67]

45 Root-knot

nematodes

RIL (CB27 � 24-125B-1) RIL SNP 2 LG11 70.9–

72.9%

Huynh et al.

[167]

46 Root-knot

nematodes

F2:3 (IT84S-2049 �
UCR779)

F2:3 SNP 1 LG11 83.10% Huynh et al.

[167]

47 Root-knot

nematodes

F2:3 (IT93 K-503-1 �
UCR779)

F2:3 SNP 1 LG11 64.50% Huynh et al.

[167]

48 Root-knot nematode

(root-galling)

resistance (isolate

Avr-M.i)

CB46-Null x FN-2-9-04 F2:3 SNP 2 Chr1,4 33.0–

73.3%

Ndeve et al.

[168]

49 Root-knot nematode

(root-galling)

resistance (isolate

race M.j)

CB46-Null x FN-2-9-04 F2:3 SNP 1 Chr1 95.10% Ndeve et al.

[168]

50 Root-knot nematode

(root-galling)

resistance (isolate

race M.j)

CB46 x FN-2-9-04 F2 SNP 2 Chr1 47.3–

65.9%

Ndeve et al.

[168]

51 Root-knot nematode

(egg-masses per root

system) resistance

(isolate race M.j)

CB46 x FN-2-9-04 F2 SNP 2 Chr1 24.7–

34.1%

Ndeve et al.

[168]

52 Root-knot nematode

(root-galling)

resistance (isolate

race M.j)

RIL SNP 1 LG9 64.00% Santos et al.

[169]

53 Brown blotch

resistance

KVx775-33-2 G x KN1

(Vita 7)

F2 allele-

specific

PCR (AS-

PCR)

4 Chr2, 3, 6, 8 Ohlson et al.

[170]

54 Foliar thrips CB46 � IT93 K-503-1 and

CB27 � IT82E-18

RIL SNP 3 LG2, 4, 10 9–32% Lucas et al. [63]

55 Foliar thrips CB46 � IT93 K-503-1 and

CB27 � IT82E-18

RIL AFLP 3 LG5, 7 9–32% Muchero et al.

[171]

56 Fower bud thrips

resistance

SANZI x VYA F2 SNP 3 LG2,4,6 6.5–24.5% Sobda et al.

[172]

57 Drought-induced

senescence

IT93K503–1 � CB46 RIL AFLP 10 LG1,2,3,5,

6,7,9,10

5–24% Muchero et al.

[76]

58 Leaf senescence ZN016 � ZJ282 RIL SNP 2 LG3,7,11 11–29% Xu et al. [77]

59 Heat tolerance CB27 � IT82E-18 RIL SNP 5 LG2,3,6,

7,10

12–18% Lucas et al. [78]

60 Nitrogen utilization-

related traits

BRS Marataoa x IC-1 F2 SSR 2 LG4, 6 21.4–

49.3%

Ohlson et al.

[170]

61 Pod fiber contents

(Hemicellulose,

Cellulose and lignin)

JP81610 � TVnu-457 F2:3 SSR 4 LG7 5.79 –

51.32%

Watcharatpong

et al. [163]

62 Pod fiber contents

(Hemicellulose,

Cellulose and lignin)

JP81610 � TVnu-45 F2 SSR 3 LG7 11.31–

58.14%

Watcharatpong

et al. [163]

R2 % represents ranges of phenotypic variation of the given QTLs. Adapted and updated from Boukar et al. [52].
African yam bean
Africanyambean(Sphenostylis stenocarpaHochst.ExA.Rich

Harms)isanindigenousunderutilizedlegumeofSSA.Ithas

the potential to aid the development of nutritious diets
Please cite this article in press as: id="aut0015">BenjaminFaloye RPDeveloping the role of legum

pbi.2020.05.002

www.sciencedirect.com 
under climate change in the smallholder agriculture of SSA.

African yambean (AYB) is one of the neglected crops with

very limited research attention and no breeding [84]. Its

seed, tubers and leaves are nutritionally rich and healthy for
es in West Africa under climate change, Curr Opin Plant Biol (2020), https://doi.org/10.1016/j.
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human consumption. AYB is mainly grown for its seeds in

West Africa while the crop is grown in East and Central

Africa for its tubers.

Theneglectandunderutilization ofAYB maybedueinpart

to some production and utilization constraints, such as long

duration of cooking, low yields, anti-nutritional factors and

long maturity period [85,86].

Thecost of AYB and lima beans are considerably lower than

other legumes such as cowpea [87]. Unlike cowpea, AYB

and lima beans are neither popular nor widely accepted,

despite their wide distribution and better yields [88]. AYB

leaves are also cooked and eaten as vegetables [89] because

of its nutritional content AYB also has the potential to serve

as food supplement to most diets in the third world where

there is the lack some essential nutrients resulting in

malnutrition in those areas [90,91].

AYB is adaptable to and capable of growing on acid and

sandy soils of the humid tropics [43] which makes it a

potential climate smart crop for the future. Formation of

nodulesonAYBplantswasrecordedbyObiagwu[92]hence

the contribution of AYB to soil productivity was attributed

tonitrogenfixationandalso to its lownitrogenharvest index

hence, it is possible to grow AYB without additional sup-

plementary nitrogenous fertilizer, Giller [93] African yam

bean’s ability to fix atmospheric nitrogen thus imply that

largeamountofnitrogenousfertilizer isnotrequiredtogrow

on marginal soils which makes its production economically

affordable for low income farmers who has little or no

resources for chemical fertilizers. The utilization of AYB

and other legumes as cover crops increases soil nitrogen

content and the amount of organic matter thereby main-

taining high soil productivity [94]. AYB climbing habit is

alsousefulinformingalivingfencearoundfieldsofcocoyam

when grown on [43].

Different type of molecular markers such as RAPD [95],

AFLP [96,97], SSR [98] and ISSR [99] have been used

for molecular research in AYB. There were cross-species

transferability of SSRs were reported in AYB by Shitta

et al. [98] where cowpea SSR showed PCR amplification

and polymorphism in AYB collection. Cross-species

molecular marker transferability is useful for those spe-

cies which don’t have any sequence information or

marker available, especially in case of orphan crops

where limited molecular resources available. There

are very limited molecular research efforts done in

AYB as compared to cowpea and Bambara groundnut.

Genetic diversity of 77 and 67 different accessions was

done using AFLP [96], and SSR [98] markers, respec-

tively. The results of most of the genetic diversity study

were clustered in three to four groups [96,98,99] and

similar trends were also shown in population structure

[97,99] analysis using principal component analysis. All

these studies indicate availability of wide variation in
Please cite this article in press as: id="aut0015">BenjaminFaloye RPDeveloping the role of legum
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AYB collection which can be used for AYB crop breed-

ing. The Alliance for Accelerated Crop Improvement in

Africa (ACACIA) is currently carrying out the whole

genome sequencing project of AYB [100�]. The genome

sequencing of AYB will helpful for markers discovery as

well as precise discovery of QTL position in AYB

genome. GRC-IITA holds over 450 AYB accession, in

which majority of the accessions are from Nigeria. The

GRC collection of AYB has been characterized and

evaluated for key traits: yield, nitrogen fixation, nutri-

tional quality of tuber and seed and drought tolerance.

Significant variation has been observed between acces-

sions for key traits including yield, nitrogen fixation,

drought tolerance and seed and tuber composition in

preliminary analysis. The genetic diversity, population

structure analysis and GWAS analysis for characterized

traits are in progress with 250 AYB accessions using

DArTseq SNP markers [101] at GRC-IITA. The SNP

genotyping can also use for developing core-set of col-

lection from total AYB collection for future breeding

research. Development of bi-parental mapping popula-

tion for different important traits including yield related

and nutrition traits are also in progress. So far, there is no

report available for the linkage map development and

QTL discovery in AYB.

Bambara groundnut
Bambara groundnut (Vigna subterranea (L.) Verdc.) is a

hardy crop of West African origin with a growing cycle

and harvest time ranging from 4 to 6 months depending

on the genotype and end use. It is believed to have

centers of origin/diversity in Nigeria and Cameroon and

is grown in these countries as well as in the Sahelian

region of West and Central Africa. It is grown at low

levels of inputs very extensively throughout sub-

Saharan Africa. There is variation between landraces

in the growing degree days to maturity and many other

physiological traits. The production of Bambara ground-

nut (BG) is across the Africa and has been recorded to be

approximately 0.3 million tonnes annually [102,103]

with Nigeria regarded as the largest producer of BG

in Africa (0.1 million tonnes. Although the yield (t ha�1)

of BG in Africa varies between landraces and locations

(0.5–3 t ha�1) with yield potential of over 3 t ha�1 [104]

the average yield of 0.85 t ha�1 was reported to be

comparable to other legumes [105]. In spite of the useful

characteristics in BG, farmers in sub-Saharan Africa

obtain low yields and this requires research attention

to develop improved varieties and crop management

practices. It is highly nutritious and has been termed a

complete food with a source of protein and fiber and as it

nutritionally complements cereal crops [106]. Its seed

consist of 49%–63.5% carbohydrate, 15%–25% protein,

4.5%–7.4% fat, 5.2%–6.4% fiber, 3.2%–4.4% ash and 2%

mineral compared to whole fresh cow milk 88% mois-

ture, 4.8% carbohydrate, 3.2% proteins, 3.4% fat, 0.7%

ash, and 0.01% cholesterol [106]. It also provides the
es in West Africa under climate change, Curr Opin Plant Biol (2020), https://doi.org/10.1016/j.
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minerals such as calcium, 95.5–99 mg/100 mg, iron 5.1–

9 mg/100 mg, potassium 11447–14355 mg/100 mg and

sodium 2.9–10.6 mg/100 mg [107]. Its chemical compo-

sition is comparable to the soybean [106], while its milk

had been rated higher in acceptability than milk from

other legumes like soybean and cowpea [106].

BG become neglected possibly during the introduction of

Groundnut (Arachis hypogaea) to West Africa from Brazil,

groundnut is seen as a crop with significant amounts of oil so

it is being cultivated as an oil seed crop. In recent years,

people’s interest has begun to increase in BG cultivation

andconsumptionpossiblydueto itspotentials asa foodcrop

that thrives in dry areas, although it still lacks proper seed

systems and best agronomic practices have not been estab-

lished and shared widely [102,108��]. The ‘hard-to-cook’

phenomenon increases the effort required to prepare seed

for meals and in many countries, this means a greater fuel

cost. Consequently, this trait has been often identified as

oneofmajorbottleneckfortheuptakeofBG[109].Hard-to-

cook also develops with seed storage condition, particularly

under humid and hot conditions, and a number of theories

have been developed to explain components of this storage

trait [110].

BG and similar crops can be an important part of more

resilient and complex systems, which provide additional

nutritional and food security. BG exhibits all three drought

tolerance mechanisms avoidance, escape and tolerance

[111–115]. Mabhaudhi et al. [44] reported that BG has been

indicated to adopt dehydration-escape mechanisms,

including a reduced vegetative growth period, early flower-

ing, a shorter duration of the reproductive stage, and early

maturity date in response to water stress. Landraces Red’

and‘Brown’have beenshownanearlier maturitydatewhen

the plants were stressed at 30% of the crop water require-

ment (ETa; mean: 122.75 DAP) as compared to 100 % ETa

(mean: 128 DAP) [44]. BG is held high value for its nutri-

tionalqualityandabilitytotoleratearangeofenvironmental

conditions and durations of stress (known as drought toler-

ance) by the consumers and the farmers in SSA regions,

respectively. Because of the climate change, crop modeling

projected[19] thatcommonbean,maize,banana,andfinger

millet are projected to reduce their suitable areas signifi-

cantly (30–50%). Out of these crops, common bean yield is

highly sensitive to climate than other legumes and a small

change in yield within �5% of current yield levels can be

expected in less than 2% of the agricultural area of the

continent [19]. Thus, cowpea drought/heat tolerance

improved varieties could be used as adaptive major crop

and BG could also be used as alternative crop. These

indigenous legumes can be promoted as climate resilient

crop as a crop shifting strategy under climate change,

especially in drought prone and unpredictable rainfall

regions of African continent including West Africa to avoid

any reduction in crop production and food security of SSA

regions.
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Different nature (dominant and co-dominant) of mar-

kers including advanced SNP marker are in use for

genetic relationship and linkage mapping of BG

[101,116–125]. The results of the genetic diversity stud-

ies showed that the majority of West African accessions

were grouped with Cameroon/Nigeria accessions, while

they were differentiated from East African, central Afri-

can and Southeast Asian accessions by grouping in

different clusters [101,125]. Both allelic and gene diver-

sities were also higher in the West African and Camer-

oon/Nigeria regions than East Africa and other groups

[125]. Crop breeders and geneticist has been shown their

tremendous interest for genetic diversity study to use

smartly the large germplasm collection for their crop

improvement program. The results of integrated linkage

map from Ho et al. [117] showed that the genetic linkage

map of IA (IITA686 x Ankpa4) consisted 11 linkage

groups from 223 markers (DArTseq SNP and DarT

markers) using 263 F2 lines which covered 1395.2 cM

and the genetic map of TD (Tiga Nicuru x DipC) from

71 F3 lines also gave 11 linkage groups consisting of

293 markers and covered 1376.7 cM. Different type of

markers used in both linkage maps were showing syn-

teny to their close relative legumes namely, common

bean, adzuki bean and mung bean genomes [117]. The

crops (like pigeon pea, chickpea, groundnut, etc.) were

known as an orphan crop in the past but now they are

entered in advanced era of molecular breeding and

improvement after their genomes were sequenced using

NGS technology [126]. The sequencing of BG has been

completed [127��,128��]. The size of genome of Bambara

groundnut is 550 Mbp as compared to 620 Mbp of cow-

pea genome. With the advancement of NGS, 236 plant

genomes have been sequenced [126]. The complete

sequencing of plastid genome (size 152 015 bp) of BG

has also been reported by Liao et al. [129��]. A study of

QTL discovery using bi-parental mapping population

was conducted by Ahmad et al. [130]. They identified a

total of 36 QTL in BG for different traits including

internode, days to emergence, growth habit, seed

weight, pod length and width. The phenotypic effect

explained by a single QTL ranged from 11.6%–49.9%

[130]. The stable QTL were found only for internode

length [117,130] and growth habit [130]. A study focused

on the analysis of the transcriptomic changes was done in

two BG landraces (DipC and TN) in response to dehy-

dration stress by Khan et al. [131]. The results were

indicated that many potential dehydration-responsive

genes are expressed, even under water-sufficient con-

ditions, in both landraces, suggesting that Bambara

groundnut could at least be in a partially ready state

for dehydration, even in the absence of dehydration

stress. The DipC genotype displayed the differential

expression of some well-known dehydration-associated

transcriptions factors (especially WRKY40), while TN

showed the differential expression of CONSTANS-

LIKE 1 and MYB60 [131].
es in West Africa under climate change, Curr Opin Plant Biol (2020), https://doi.org/10.1016/j.
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GRC-IITA conserved over 1900 accessions which is the

world largest Bambara groundnut collection. Evaluation of

the GRC collection of this crop is focused on the key

constraints to greater use. This includes analysis of yield,

yield stability, drought tolerance, cooking time and nutri-

tional quality including protein content. We are also study-

ing a key attribute known as nitrogen fixation by analyzing

variation in nodule number and nitrogen fixed. For all

analyzed traits significant variation has been observed

between accessions in preliminary analysis. We have

applied SNP genotyping using DArTseq to explore the

untapped genetic diversity in the collection and can now

identify parents to initiate breeding programs as well as for

QTL analysis using GWAS method. Core collection from

total BG population will also be developed for future

breeding research. However, the lack of ability to easily

cross any genotype of this species remains a constraint to

bothbreedingandlinkageandQTLmapping.Thereareno

GWASandgenomicsselection(GS)studyreportedinBGso

far.Genomic-assistedbreedingcanhelptoexplorethegreat

potential of BG by developing improved climate resilient

lines to use as an alternative crop in case of crop shifting due

to climate change for improving both nutritional diet and

food security.

Winged bean
Winged bean (Psophocarpus tetragonolobus (L.) DC.) is a

tropical legume; however, it belongs to the family Fabaceae

andgenusPsophocarpus,Wingedbean(WB)issuspectedto

have originated from Papua New Guinea, Madagascar

Mauritius and India. The genus Psophocarpus contains

nine species, eight of these are wild; the cultivated winged

bean is known to produce edible highly nutritious tubers

and quadrangular pods, whose length could be up to 30 cm

long with longitudinal wings subtended on its vegetative

part and they are the most economically important. It is a

perennial plant that is grown as annual, winged bean com-

pares well with Soybean protein content (35%); the seeds

contain a high percentage of crude protein content ranging

between 29.8% and 42.5% [132]. Harding et al. [133]

observed a higher capacity for nodulation and nitrogen

fixation in winged bean than in any other tropical legumes

such as cowpea, common bean, groundnut, soybean and so

on. The high protein level in the various plant could be

attributed to the high nodulation and nitrogen fixing rates

[134].

The ability of WB to grow in heavy rainfall makes the

species a good candidate to adequately nourish the people

of tropical equatorial countries in Africa [135]. The tubers

can be used as a root vegetable, similar to potato, and have a

nutty flavor they are also much richer in protein than

potatoes. The dried seeds can be useful as flour and also

to make a coffee-like drink. WB can also be used to produce

its milk made from water, WB, and emulsifier. It provides

many opportunities for economic benefit. Mature winged

bean seeds can command high prices NRC, [136].
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Both RAPD and ISSR markers were used to characterize

twenty-fouraccessionsofWBtoseethegeneticrelationship

ofthepopulation[137],ISSRmarkersweremoreefficientin

WB over RAPD markers to unravel the polymorphism.

Similar results have been also seen in other crops, including

legumes [138,139]. WB population was grouped in two

major groups and further also grouped in seven subclusters

[137]. Considerable genetic variations among winged bean

genotypes were present, although the groupings of acces-

sions were not in congruence with their geographical affilia-

tions [137]. DArTseq GBS SNP genotyping of available

48 accessions at GRC-IITA has also been initiated for WB

for genetic diversity and population structure analysis. The

diversity and population structure results will help to

develop crossing between diverse lines for future breeding

research.

Kersting’s groundnut
Kersting’s groundnut also known as geocarpa groundnut

or ground bean is the seed of Macrotyloma geocarpum
[140]. Kersting’s groundnut [Macrotyloma geocarpum
(Harms) Maréchal and Baudet] is a leguminous crop

cultivated on small-scale in the western part of Africa.

Kersting’s groundnut (KG) is drought-tolerant and well

adapted to the Sudan, Guinean, savannah agro-ecologi-

cal zone [141]. The crop thrives well in the savannah and

rainforest-savannah zones of West tropical Africa. It

requires light, sunshine and moderate rainfall and grows

well on sandy loam soils. It is able to tolerate some

amount of drought in the tropical dry forest zone [142].

The crop grows successfully in areas with annual rainfall

of between 500–600 mm [143] but can survive under low

annual rainfall of 75–150 mm. The crop can grow and fix

nitrogen in drought-prone environments where any

other crops can barely survive [144]. KG is less suscep-

tible to diseases and pest attack in the field [46]. Its yield

ranges from 350 to 650 kg seed/ha in farmers field,

although yields up to 1500 kg seed/ha have been

reported in Rhodesia (now Zimbabwe) [145]. These

yields compare well with yields of pigeon pea of 500–

1600 kg seed/ha. With current climate variability and the

occurrence of intra-season drought in West African

region [146], it may be a viable crop option for vulnerable

ecosystem.

Isozyme markers was used by Pasquet et al. [120] for

characterizing eighteen domesticated and two wild

accessions of KG from Togo and Burkina Faso. The

results were showing narrow genetic base of KG, which

is not likely to favor genetic gain in breeding pro-

grammes [147]. The cross-species molecular marker

transferability was also observed in KG [148], where

twelve Simple Sequence Repeat (SSR) markers from

cowpea to KG were identified. Out of 12 SSR markers,

9 SSR were showing monomorphic and three were not

amplified [148]. The successful cross-genus transferabil-

ity of cowpea SSR in KG is showing the existence of an
es in West Africa under climate change, Curr Opin Plant Biol (2020), https://doi.org/10.1016/j.
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evolutionary relationship between two species. The

genotyping of available KG germplasm has also been

initiated at GRC-IITA using DArTseq GBS-SNP for

genetic diversity and population structure analysis.

Conclusion and prospects
Strongsignificant futureclimate signals have beenreported

showing that there will be shorter rainy season, arid, semi-

arid conditions, longer dry spells and heavy rainfall in

most West African countries. Mean crop production

could be reduced between 20%–40% by 2050 in humid

and West African countries. Little research has been

done on modeling of future climate signals for West

African crops compared to the major crops of the world.

Cowpea yield could reduce 22%–24% by 2030, while

interestingly BG yield can increase 37.1%, under climate

change scenario GISS A2 2080. More efforts are required

now on modeling for West African crops including cow-

pea, BG and AYB. There is no climate modelling report

available for AYB, WB and KG. In the case of crop failure

due to climate change scenario, there should be an

alternative crops strategy which can mitigate the effects

of climate change. Orphan legumes particularly BG could

be used as an alternative crop either directly (landrace) or

as improved varieties that will derived from traditional

photoperiod-sensitive landraces which are less affected

by temperature increase since the photoperiod limits the

reduction of the crop duration and also the positive

effects of higher CO2 concentrations. These more resil-

ient orphan legumes could be promoted as replacement

options for areas that require adaptation alongside, a shift

to more drought/heat tolerance varieties of staple crops

such as cowpea. Evaluation of the GRC-IITA collection

(including cowpea FIGS population) of these crops is

focused on exploring existing genetic diversity for cli-

mate adaptive traits yield, drought and nutritional traits

for pre-breeding. We are also applying cutting-edge

genomics tools in these crops for high-depth genome-

wide SNP discovery using NGS, exploring genetic diver-

sity, population structure and development of high-den-

sity genetic linkage/QTL maps. The QTL-trait discov-

ery is in progress for adaptive traits using GWAS

approach in cowpea, BG and AYB. By using reference

genome, there is a great scope to apply genome-wide

methods for marker-trait association studies and to select

desirable genotypes via genomic selection which can

increase genetic gains and accelerate rapid breeding

cycles for complex quantitative traits of biotic and abiotic

stresses. The reference genome is available only for

cowpea and recently BG draft genome also published

too. Consequently, the use of advanced genomic tools is

well adapted with advanced breeding approach in cow-

pea and it is followed BG and AYB. GAB has the

potential to increase the rate of genetic gain for complex

traits including climate adaptive traits. There is also an

urgent need to initiate more research efforts on nutri-

tional traits with genomic tools of these legume crops
Please cite this article in press as: id="aut0015">BenjaminFaloye RPDeveloping the role of legum
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including cowpea because of minimal molecular research

of nutritional traits conducted in the past. It is unlikely

that sufficient funding for genomics and advanced breed-

ing programmes in a diverse range of orphan crops with

significant unfulfilled potential will be forthcoming.
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