ELSEVIER

Available online at www.sciencedirect.com

ScienceDirect

Current Opinion in

Plant Biology

CRISPR/Cas9-based genome editing of banana

for disease resistance

Leena Tripathi, Valentine O Ntui and Jaindra N Tripathi

Banana production is severely constrained by many pathogens
and pests, particularly where a number of them are co-existing.
The use of disease-resistant banana varieties is one of the most
effective ways to mitigate the negative impacts of pathogens
on banana production. Recent advances in new breeding
techniques have the potential to accelerate breeding of banana
for disease resistance. The CRISPR/Cas9 based genome
editing has emerged as the most powerful tool for crop
improvement due to its capability of creating precise alterations
in plant genome and trait stacking through multiplexing.
Recently, the robust CRISPR/Cas9-based genome editing of
banana has been established, which can be applied for
developing disease-resistant varieties. This article presents a
synopsis of recent advancements and perspectives on the
application of genome editing for generating disease-resistant
banana varieties. It also summarizes the current status of
regulatory requirements for the release of genome-edited crop
varieties among different countries.
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Introduction

Plant pathogens and pests pose a serious threat to food
security as they are estimated to cause around 20-40%
losses of food production worldwide [1]. Currently, they
are creating an even higher risk to food security due to
climate change and increasing global trade. Several cata-
strophic plant pathogens affect banana (Musa spp.), which
is one of the major staple food crops in 136 countries
grown on 11 million hectares of land (Figure 1) [2°°]. Its
global production is approximately 153 million tons annu-
ally, supplying food to more than 400 million people [2°°].
Bananas are mainly cultivated by smallholder farmers for
household consumption and local or regional markets;
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only approximately 15% of production enters interna-
tional markets. Besides contributing to food security as
a staple crop, it generates income as a cash crop, particu-
larly in tropical and sub-tropical countries. Africa supplies
one-third of the world’s banana production, with East
Africa being the largest banana-growing region account-
ing for about 40% of the aggregate production in Africa.
Banana provides 30-60% of the daily per capita calorie
intake in some East African countries such as Burundi,
Rwanda, and Uganda, with the highest consumption at
0.5 kg per person per day in Uganda [3].

Several different types of banana are grown globally
(Figure 1a); however, large-scale farmers grow mainly
the Cavendish type of dessert banana for local and inter-
national markets. Other types of dessert banana varieties
such as Gros Michel, Sukali Ndiizi, Mysore, Silk, and
Pome are also grown at a low level. Besides, cooking types
such as the East African Highland Banana and bluggoe,
the roasting type plantain, and the brewing type such as
Pisang Awak are also grown mainly in Africa.

The biggest challenge in agriculture is to feed the grow-
ing human population, which is projected to reach 9.7
billion in 2050 and 10.8 billion by 2100 compared to
7.7 billion in 2019 [4°]. Therefore, there is an urgency
to close the yield gap in staple crops and enhance food
production to feed the world. In Africa, the emphasis
should be on banana rather than on cereals, unlike other
parts of the world, as it is one of the main crops used for
staple food and generation of income. Investment in the
genetic improvement of banana holds great prospects for
improving food security as it feeds more people per unit
area of production than other staple crops [5°°].

To fulfill the increasing demand for food with limited
resources, better and efficient ways to produce food are
required. The development of banana resistant to dis-
cases by conventional breeding is a significant challenge
because of inter-specific hybridization barriers, which
prevent the transfer of desirable agronomic traits into
the genus. The major problems in traditional crossing are
polyploidy, lengthy production cycle, sterility of the
majority of cultivars, and low genetic variability in Musa
germplasm [3]. Moreover, the introduction of multiple
fungal, bacterial, and virus-resistant genes into the crop
may cause considerable yield reduction or intensify
other agriculturally undesirable traits because of genetic
linkage. Modern biotechnological tools such as genetic
modification (GM) and genome editing (GE) offer
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The world map highlighting banana-producing countries as well as the distribution of different types of banana and major pathogens and pests
globally. (a): World map showing the distribution of different types of banana in significant banana-producing countries. The map was created
based on the information on ProMusa Diversity of Banana Cultivars Portal [http://www.promusa.org/Diversity+of+banana+cultivars+portal],
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cost-effective strategies for developing improved varie-
ties of banana resistant to multiple diseases. Currently,
serious efforts are underway to develop GM varieties of
banana resistant to diseases and pests [3,5°°]. However,
the commercialization of GM crops faces hurdles due to
complicated regulatory approval processes. A recent
development in GE has the ability to accelerate breeding
by making efficient and precise changes in the plant
genome to develop new traits such as disease resistance.
This article presents an overview of recent progress and
perspectives to explore the application of CRISPR-Cas9-
based GE for developing improved banana with resis-
tance to diseases.

Banana diseases

Banana production is severely constrained by several
diseases and pests, particularly in regions where various
pests and pathogens co-exist (Figure 1b). Prominent
among these diseases are banana Xanthomonas wilt
(BXW) caused by Xanthomonas campestris pv. musacearum,
black Sigatoka caused by Pseudocercospora fijiensis, Fusar-
ium wilt, commonly known as Panama disease, caused by
Fusarium oxysporum f. sp. cubense (Foc), banana bunchy
top disease, and banana streak disease and pests such as
nematodes and weevils (Figure 2) [3,5°°].

BXW disease is considered one of the most significant
production constraints for the banana in Central and East
Africa [6°]. The disease affects the cultivation of all types
of banana, and its impacts are severe and fast, as it has
wiped out entire plantations in many of the affected areas.
Overall, economic losses from BXW were estimated at US
$2 to 8 billion over a decade [7]. BXW disease has
negatively affected the food security and income of
smallholder farmers, who depend on the banana for their
livelihood.

New plant diseases potentially threaten staple crops
around the world. For example, severe risks to global
production of banana are currently posed by Fusarium
oxysporum f. sp. cubense tropical race 4 (T'R4) [8°°]. In the
1950s, the first outbreak of Fusarium wilt race 1 wiped out
the main commercial banana ‘Gros Michel’ and was
replaced by Cavendish varieties, which currently cover
about 90% of export markets [9]. Now, a new outburst of
TR4 is threatening the production of Cavendish and
other varieties of banana [8°°]. For more than 20 years,
TR4 has been contained in the Northern Territory of
Australia and the East and parts of Southeast Asia; how-
ever, since 2010, the disease has spread to additional
countries in Southeast and South Asia and the Middle
East and Mozambique in Africa [8°°]. Recently, TR4 has

also been reported in Colombia, which is the biggest
banana exporter in the world [10°]. The emergence of
this new threat to banana production has created an
urgency to develop disease-resistant varieties using
new breeding tools such as GE [8°°].

Advances and prospects of genome editing
for disease resistance

T'o attain global food security, the application of new
breeding methods for agricultural productivity is of key
interest [11°°]. Advances have been reported for the
manipulation of desired plant genes in crops using various
site-directed nucleases (SDN) such as zinc-finger
nucleases (ZFNs), meganucleases (MNs), transcription
activator-like effector nucleases (TALENSs), and clus-
tered regularly interspaced short palindromic repeats/
CRISPR-associated protein 9 (CRISPR/Cas9) [11°°].
The CRISPR/Cas9 system has emerged as the most
potent tool for targeted GE, including gene knockouts,
base replacement, multiplex gene editing, and regulation
of gene transcription in plants [11°°]. It is becoming the
most popular technique for crop improvement due to its
simplicity, design flexibility, and high efficiency
[5°°,11°°]. The CRISPR/Cas9 tool is based on the induc-
tion of double-stranded breaks (DSB) at a target site and
repair of the break, either through homology-directed
repair (HDR) or non-homologous end joining (NHE]).
It creates user-desired mutations ranging from targeted
point mutation to large deletions or insertions of exoge-
nous DNA at the target site in the genome. There are four
different types of editing—SDN1, SDN2, SDN3, and
base editing [12°]. SDN1 is a highly efficient, error-prone
repair of a targeted DSB through NHE], leading to a
mutation causing gene silencing, gene knockout, or a
change in the function of a gene. SDNZ is less efficient
and high fidelity, generated by HDR consisting of a
template-guided repair of a targeted DSB using a repair
template with one or several small mutations flanked by
two sequences matching both ends of the DSB. This type
of repair allows the introduction of the mutation(s) at the
target site. SDN3 is also less efficient, and high fidelity
generated by HDR and involves the insertion of the
entire gene or genetic element(s) at the target site using
a donor sequence through a template-guided repair of a
targeted DSB. The SDNI1 and SDN2 are similar to
mutations obtained through chemical mutagenesis, irra-
diation, or spontancous natural mutations. Base editing
generates precise single-nucleotide changes in genomic
DNA or cellular RNA without causing DSBs, needing a
DNA donor template, or depending on HDR. As base
editing does not require a DNA donor template, thus it
might be considered as SDN-1 [12°].

(Figure 1 Legend Continued) ProMusa Banana Cultivar Checklist [http://www.promusa.org/Banana+cultivar+checklist], and FAOSTAT data for
banana and plantain [http://www.fao.org/faostat/en/#data/QC]. (b): Distribution of major pathogens and pests globally. The world map showing the
presence of various pathogens and pests co-existing in the same country. This map was created using the information on pathogen distribution

from CABI [https://www.cabi.org/isc].
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Pictures of banana plants showing symptoms of major diseases and pests. (a): Banana Xanthomonas wilt, (b): Fusarium wilt, (c): Black Sigatoka,
(d): Banana bunchy top, (e): Banana streak and (f): Toppling of plant due to nematode infestation.

The availability of a well-annotated, whole-genome
sequence of banana (http://banana-genome-hub.
southgreen.fr) coupled with established genetic transfor-
mation and regeneration protocols makes the banana a
strong candidate for GE. Recently, CRISPR/Cas9-based
genome editing has been reported for banana
[13°°,14°°,15°,16°]. The robust GE protocol developed
for banana (AAA group) and plantain (AAB group) could
provide an operational framework for single or multiple
knockouts, opening up avenues for efficient and targeted
genome manipulations for disease resistance [13°°]. Sin-
gle and multiple knockouts are also possible through
classical GM technology using RNAi approach. How-
ever, RNAIi does not always result in a complete knock-
out; therefore genome-editing could potentially be used
to simultaneously knocking out genes and probably
without the integration of any foreign DNA. This is a
significant development as banana is polyploid and chal-
lenging to improve through conventional breeding
approaches.

The use of disease-resistant banana varieties is one of the
most effective solutions to mitigate the adverse effects of
pathogens on banana production. CRISPR technology
has been successfully applied to explore the development
of crop varieties with disease resistance (Table 1,
14°°,17°,18°,19,20-26,27°,28°,29°,30). GE can be used to
disrupt the function of disease-causing susceptibility (‘S’)

genes, the transcription factor, and sugar transporters as a
strategy to develop resistance against bacterial and fungal
pathogens [11°%,17°]. For example, simultaneous muta-
tions (insertions, deletions, and substitutions) in the
effector binding elements (EBE) in the promoters of
three SWEET (Sugars Will Eventually be Exported
T'ransporters) genes (OsSWEETI1, OsSWEET13, and
OsSWEETI4) by CRISPR/Cas9 conferred resistance to
bacterial blight [17°]. Knockout mutations were created
in the promoters of all three SWEET genes simulta-
neously using a multiplex CRISPR/Cas editing approach,
where the plasmid containing multiple guide RNA
(gRNA) and Cas9 gene were introduced using Agrobacter-
ium-mediated transformation in rice. The edited lines
grew normally, without yield suppression, and were resis-
tant to different strains of bacterial blight under green-
house trials.

The disruption of the coding region of both alleles of the
S gene, LATERAL ORGAN BOUNDARIES (CsL.OB1),
conferred a high level of resistance to citrus canker [20].
The edited lines were generated through Agrobacterium-
mediated transformation using the plasmid containing
Cas9/gRNA targeting the CsLOBI coding region. The
edited lines with frameshift mutations (deletion and
insertion) showed enhanced resistance to citrus canker
in the glasshouse experiments. No phenotypic changes
were observed in these plants in comparison to wild type
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Table 1

Advances in crop improvement for disease resistance using genome editing

Crop Editing system Target gene  Editing type Repair Delivery method Trait Reference
mechanism
Bacterial diseases
Apple CRISPR/Cas9 DIPM1, Knockout NHEJ Agrobacterium-mediated Resistance to fire blight [19]
DIPM2, transformation disease
DIPM4
Citrus CRISPR/Cas9 CsLOB1 Knockout NHEJ Agrobacterium-mediated Resistance to citrus canker  [20]
transformation
Rice CRISPR/Cas9 OsSWEET11, Knockout NHEJ Agrobacterium-mediated Resistance to bacterial blight [17°]
OsSWEET13, transformation disease
OsSWEET14
Rice CRISPR/Cas9 Os8N3 Knockout  NHEJ Agrobacterium-mediated Enhanced resistance to [18°]
transformation Xanthomonas oryzae pv.
oryzae
Tomato CRISPR/Cas9 SiDMR6 Knockout NHEJ Agrobacterium-mediated Resistance to Pseudomonas [21]
transformation syringae, and Xanthomonas
spp.
Tomato CRISPR/Cas9 SiJAZ2 Knockout NHEJ Agrobacterium-mediated Resistance to Pseudomonas [27°]
transformation syringae
Fungal diseases
Cocoa CRISPR/Cas9 TcNPR3 Knockout  NHEJ Agrobacterium-mediated Increased resistance to [297]
transformation (transient Phytophthora tropicalis
expression)
Cotton CRISPR/Cas9 Gh14-3-3d Knockout  NHEJ Agrobacterium-mediated Resistance to Verticillium [28°]
transformation dahlia
Grapes CRISPR/Cas9 MLO7 Knockout ~ NHEJ Polyethylene glycol (PEG) Resistance to powdery [19]
mediated Protoplast mildew
transformation
Grape CRISPR/Cas9 WWRKY52 Knockout NHEJ Agrobacterium-mediated Resistance to Botrytis [26]
vine transformation cinereal
Rice CRISPR/Cas9 OsERF922 Knockout NHEJ Agrobacterium-mediated Resistance to Magnaporthe  [25]
transformation oryzae
Rice CRISPR/Cas9 OsSEC3A Knockout NHEJ Agrobacterium-mediated Enhanced resistance to [30]
transformation Magnaporthe oryzae
Tomato CRISPR/Cas9 SiDMR6 Knockout ~ NHEJ Agrobacterium-mediated Resistance to Phytophthora  [21]
transformation capsica
Tomato CRISPR/Cas9 SiMLO1 Knockout NHEJ Agrobacterium-mediated Resistance to powdery [23]
transformation mildew
Wheat TALEN and TaMLO-A1, Knockout NHEJ Protoplast transformation/ Enhanced resistance to [22]
CRISPR/Cas9 TaMLO-B1, Biolistic transformation powdery mildew
TaMLO-D1
Wheat CRISPR/Cas9 TaEDR1 Knockout NHEJ Biolistic transformation Resistance to powdery [24]
mildew
Viral diseases
Banana CRISPR/Cas9 Viral genome  Knockout NHEJ Agrobacterium-mediated Inactivation of eBSV [14°]
transformation
Cassava CRISPR/Cas9 elF4E Knockout  NHEJ Agrobacterium-mediated Partial resistance to CBSD [38°]
isoforms transformation
nCBP-1,
nCBP-2
Cucumber CRISPR/Cas9 elF4E Knockout NHEJ Agrobacterium-mediated Resistance to Cucumber vein [39]
transformation yellowing virus, Zucchini
yellow mosaic virus, and
Papaya ringspot virus-type W
Potato CRISPR/Cas9 Coilin Knockout NHEJ Biolistic transformation Increased resistance to [40°]
Potato virus Y
Rice CRISPR/Cas9 elF4G Knockout NHEJ Agrobacterium-mediated Resistance to Tungro [37°]
transformation spherical virus
Tobacco CRISPR/Cas9 Viral genome Knockout  NHEJ Agrobacterium-mediated Resistance to Tomato yellow [36]
IR, CP, RCR transformation mosaic virus
Tobacco, CRISPR/Cas9 IR, CP, Rep  Knockout  NHEJ Agrobacterium-mediated Resistance to Tomato yellow [34°]
Tomato transformation leaf curl virus
Tobacco CRISPR/Cas9 IR, Cl coding Knockout NHEJ Agrobacterium-mediated Complete resistance to [35]
regions transformation Cottonleafcurlmultan virus
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plants. Likewise, disruption of the downy mildew resistance
6 allele of tomato (SzDMR6-1) gene showed disease
resistance to several pathogens such as Pseudomonas syr-
ingae, Phytophthora capsici, and Xanthomonas spp. [21].
Similarly, knockout of the SiML.OI gene in tomato and
TaMLO and TaEDRI in wheat enhanced resistance to
powdery mildew disease [22-24].

The edited rice plants with knockout mutations in the
transcription factor ethylene-responsive (OsERF922)
gene, a negative regulator of the blast resistance, con-
ferred increased resistance to Magnaporthe oryzae [25].
This study demonstrated that CRISPR/Cas9 plasmid
targeting OsERF922 induced insertion or deletion muta-
tions at the target site leading to the frameshifts in the
OsERF922 gene. The rice mutants with the knockout of
OsERF922 showed enhanced resistance to M. oryzae
without altering the agronomic traits. The results exhib-
ited that all allelic mutations in the Ty mutants were
transmitted to the T'; generation plants. The study also
indicated that the mutagenic frequency could be
increased by targeting multiple sites within one gene.
Likewise, the knockout of transcription factor VoWRKY52
in Vitis vinifera showed enhanced resistance against Bozry-
s cinereal [26]. Similarly, knockout of §#JAZZ2 showed
resistance against Pseudomonas syringae in tomato [27°].
Zhang et al. [28°] demonstrated that manipulating G/#14-3-
3d gene, the negative regulator of disease resistance, in
Gossypium hirsutum conferred resistance to Verticillium
dahlia.

Similar approaches of manipulating endogenous ‘S’
genes, sugar transporters, and the negative regulator of
disease resistance can be applied in banana to enhance
resistance against bacterial and fungal pathogens [31°].
The target genes in a banana for resistance to bacterial
disease have been identified through the comparative
transcriptomics of the resistant wild type banana Musa
balbisiana and susceptible banana Pisang Awak [32°].
The knockout of single or multiple susceptibility genes
(such as MLO13, DMRG6), transporter genes (like
SWEETI4), and the negative regulators (e.g. E3 ubiqui-
tin ligases) can provide resistance to BXW disease. In
addition, endogenous Musa defense genes such as dis-
ease resistance (R gene), the pathogenesis-related gene
(PR), receptor kinases, and antimicrobial protein can be
activated using CRISPR activation (CRISPRa) technol-
ogy [32°,33°].

GE has been applied to develop resistance against gemi-
niviruses (ssDNA) such as romato yellow leaf curl virus,
fomato yellow mosaic virus, cotton leaf curl multan virus, and
single-stranded RNA (ssRNA) viruses such as 7ice tungro
spherical virus, cassava brown streak virus, turnip mosaic
virus, and potato virus Y [34°,35°,36,37°,38°,39,40°]. The
editing of the eukaryotic translation initiation factor (e/F)
gene family, including e/F4E, its paralogue elF(iso)4E
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and e/F4E isoforms #CBP-Iand #CBP-2 and elF4G, has
provided resistance to several viruses including cucumber
vein yellowing virus, succhini yellow mosaic virus, papaya
ringspot virus-type W, cassava brown streak virus and rice
tungro spherical virus [37°,38°,39]. The editing of the elF
gene family in banana can provide resistance to BBTV,
which is an ssDNA babuvirus.

Recently, CRISPR/Cas9-based editing was applied to
inactivate the integrated endogenous banana streak virus
(eBSV), dsDNA badnavirus, integrated into the B
genome of plantain (AAB), overcoming a major challenge
in breeding and the dissemination of hybrids [14°°]. The
GE plantain ‘Gonja Manjaya’ were generated with muta-
tions in the targeted sites of integrated eBSV sequences in
the host genome. Sequencing and phenotyping of the
edited events showed targeted mutations and confirmed
the inactivation of eBSV for its ability to be converted into
infectious viral particles.

Challenges of genome editing of asexually
propagated and polypoid crops

Generation of disease-resistant GE banana by plasmid-
based delivery of CRISPR reagents (gRNA and Cas9)
may be considered as GM because the plasmid usually
contains marker genes and are delivered by Agrobacterium
into the plant cells, resulting in random integration of
foreign genes in the plant genome. Even though the
integrated foreign gene can be removed by genetic seg-
regation in sexually propagated crops, this is not feasible
in asexually propagated crops [41°]. The GE plants gen-
erated through Agrobacterium-mediated transformation
may face similar hurdles to GM crops. To overcome
the regulatory hurdles, considerable efforts have been
made in banana and other asexually propogated crops to
directly deliver the preassembled Cas9 protein-gRNA
ribonucleoproteins (RNP) into the plant cells [5°°,41°].
The RNPs mutate the target sites immediately upon
delivery and then get rapidly degraded by endogenous
proteases leaving no traces of foreign DNA elements. In
banana, preassembled RNPs targeting different traits for
disease resistance could be coated on gold particles and
delivered to banana cell suspension cultures or proto-
plasts [5°°]. The plant cells can then be regenerated to full
plants. The foreign DNA-free approach could be useful
in the production of banana for resistance to diseases. The
foreign DNA-free GE plants might not require strict
regulatory approval in several countries that will make
the commercialization of these types of edited plants
easier [11°°].

Another challenge of editing of polyploid heterozygous
crops such as banana is simultaneously targeting multiple
alleles. A large number of transformants should be
screened to recover an edited line with multiallelic muta-
tions [41°].
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Table 2

Summary of regulatory approaches in different countries for genome edited products

Country

Current regulatory approach

References

Argentina
Brazil
Chile

Australia

Canada

European Union

India

Japan

GE crops with no foreign gene are not subjected to GMO regulation. Allows for a case-by-case
assessment to determine the regulatory status of a crop.

Regulate GE products on a case-by-case basis and exempt crops from regulation when there is
no transgene insertion.

Regulate GE products on a case-by-case basis and exempt GE crops from regulation when
there is no transgene insertion.

Australian Office of the Gene Technology Regulator (OGTR) has proposed technical
amendments to the existing definitions of the GMO regulations to better address new breeding
techniques applications. According to the proposed amendment GE crops with no foreign gene
integration (SDN1) are not be regulated in the same way as GMOs. The edited products, where
a repair template (i.e. SDN2 and SDNB3) is used to guide genome editing, are treated as GMOs.
Canada’s regulatory process is based on novelty. Their approach to GE technologies is no
different from the technologies that have preceded it. If the technology creates a novel product,
then it requires additional regulatory oversight.

On 25 July 2018, the European Court of Justice ruled that organisms developed using GE
technology fall under the obligations of Directive 2001/18/EC; which means that GE products
are considered to be GMOs.

India has not issued and formal guidance for regulating GE products. Current proposal is that
India does not consider products developed through GE to be GMO and thus will not be
reviewed under the national GMO legislation. GE products will be reviewed at a State level.
Japan considers varieties developed using GE with no new DNA as non-GMO. Regulators
recommends regulating only GMOs that have had foreign genes permanently introduced into
their genomes and not those whose endogenous genes have been edited.

[427
[431
[431

[447

[49]

[46°,47°]

[437

[487

Kenya Guidelines for regulation of GE products are under development. [497]

Nigeria
United States of America
pesticidal traits are introduced

Biosafety agency is drafting guidelines on GE. [50°]
No biosafety oversight of GE applications, if no genetic elements from pathogenic species or [11°7]

GE, Genome editing; GMO, Genetically modified organism; SDN, Site directed nucleases.

Regulatory approaches for edited products
GE has shown immense potential for crop improvement,
but the regulation of GE products is still in its early stages.
There are differences among the countries regarding the
regulation of GE crop varieties. The GE varieties with no
foreign gene integration, particularly SDN1, are not reg-
ulated in several countries such as Argentina, Australia,
Brazil, Chile, Canada, Japan, and the USA (Table 2).
These countries have issued legal interpretations of vari-
ous exceptions in regulatory rules and exempted GE
crops from the stringent regulations similar to GMOs
[11°°]. GE is treated similarly to conventional breeding
in Canada, and the regulation of improved plant varieties
is based on novelty. In the USA, no regulatory oversight of
GE applications is required if no genetic elements from
pathogenic species or pesticidal traits are introduced. The
world’s first regulation for GE crops was reported for
Argentina [42°]. Later on, Brazil and Chile adopted the
same policies. Currently, many countries do not have a
clear regulatory framework for GE crops. However, sev-
eral countries like Kenya, Nigeria, and India are in the
process of developing the regulatory guidelines for the
application of genome editing.

Conclusion
GE crops can play a pivotal role in agriculture for enhanc-
ing nutrition, food safety, and security. It has emerged as a

powerful biotechnological tool, which can precisely intro-
duce new traits to crops for better yield and enhanced
nutrition. Over a decade, a lot of progress has been made
for creating improved crop varieties. The advances in GE
have the potential to develop disease-resistant varieties of
banana, which will contribute to food security, particu-
larly in Africa. However, the commercialization of GE
products has some challenges due to the regulation of
genome-edited products in various countries. T'he usage
of genome editing in crop improvement programs of
banana will be boosted by developing science-based
guidelines, which will treat the GE varieties similar to
those generated through conventional breeding, particu-
larly where no foreign gene is inserted. It will enhance the
adoption of disease-resistant GE varieties, hence contrib-
uting to food security.
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