PLANTING TIME OF COWPEA LIVING MULCH EFFECT ON SOIL MOISTURE FLUXES AND MAIZE GROWTH IN THE NORTHERN REGION, GHANA

By

Ernestina Annan (Miss)

(BSc. Agricultural Engineering)

A Thesis submitted to the Department of Agricultural and Biosystems Engineering, Kwame Nkrumah University of Science and Technology, Kumasi in partial fulfilment of the requirements for the award degree of

MASTER OF PHILOSOPHY IN SOIL AND WATER ENGINEERING

November, 2020
# DECLARATION

I hereby declare that this submission is my own work and that, to the best of my knowledge and belief, it contains no material previously published or written by another person nor material which to a substantial extent has been accepted for the award of any other degree or diploma at Kwame Nkrumah University of Science and Technology, Kumasi or any other educational institution, except where due acknowledgement is made in the thesis.

<table>
<thead>
<tr>
<th>Ernestina Annan (Miss)</th>
<th>..........................</th>
<th>..........................</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Student: 20620390)</td>
<td>signature</td>
<td>Date</td>
</tr>
</tbody>
</table>

Certified by:

<table>
<thead>
<tr>
<th>Prof. Wilson Agyei Agyare</th>
<th>..........................</th>
<th>..........................</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Supervisor)</td>
<td>signature</td>
<td>Date</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dr. Fred Kizito</th>
<th>..........................</th>
<th>14th Dec. 2020...</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Co-Supervisor, IITA)</td>
<td>signature</td>
<td>Date</td>
</tr>
</tbody>
</table>

Certified by:

<table>
<thead>
<tr>
<th>Prof. Ahmad Addo</th>
<th>..........................</th>
<th>..........................</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Head of Department)</td>
<td>signature</td>
<td>Date</td>
</tr>
</tbody>
</table>
DEDICATION

I dedicate this thesis first to the Lord Jesus Christ who through His grace, mercy, protection and provision has made my MPhil study successful, and to all who have supported me in one way or the other.
ACKNOWLEDGEMENTS

I thank my Lord Jesus Christ for seeing me through this MPhil. Programme successfully. This research work was a collaborative research project between Kwame Nkrumah University of Science and Technology (KNUST) and the International Institute of Tropical Agriculture (IITA) with funding from USAID under project Africa Research in Sustainable Intensification for the Next Generation (Africa RISING), Tamale. I therefore appreciate these institutions for the privilege provided me to undertake my research work. I am immensely grateful to Prof. Wilson Agyei Agyare who mentored and supported me with expert advice throughout the research. I am also very grateful to Dr. Fred Kizito, the Chief Scientist of Africa RISING (West Africa) of the IITA-Africa RISING Project, for his guidance and support during the study. I am grateful to Dr. Boasiako Ohene Antwi- Dr. Patricia Oteng-Darko and Dr. William Amponsah for the assistance and support. I thank TULLOW Oil so much for their assistance in catering for my fees throughout my two years of study. I thank all the staff of IITA-Tamale for their assistance and support during the study. I am also thankful to Prof. Daniel B. Okai of the Faculty of Agriculture with her daughter Mrs. Alberta Aidoo and former student, Dr. Yaw Frimpong for their unwavering support and advice during the study. I am grateful to CPL Daniel Kwame Azumah and Miss Lauraine Mercy Ewurama Gharney who helped and encouraged me throughout this study.

To my family and friends who have stood by me and assisted me in diverse ways, the Lord Jesus bless you all.
ABSTRACT

The Northern Region of Ghana is vulnerable to weather variability especially uneven rainfall distribution patterns. This compromises soil moisture availability for optimal crop growth. The objective of this study was to assess the effect of cowpea living mulch as a soil and water conservation measure on soil moisture fluxes and maize growth in the Northern Region of Ghana. Four different maize-cowpea intercrop systems were combined with three maize varieties in four different communities and their effect on soil available moisture content and maize growth as well as yield were monitored and analyzed. The cowpea living mulch as well as maize varieties had effect on soil available moisture and maize growth. The presence of cowpea living mulch resulted in a maximum increase in available moisture of 8.81 %, its effects however differed with cowpea planting time. The system where cowpea was planted one week after planting maize yielded the highest improvement in available moisture content. Abontem maize also had higher available soil moisture conserved than the other varieties. The differences in effect of the cowpea living mulch systems on maize growth and grain yield was however not significant except for stem girth which was significantly bigger under the sole maize compared to the other three systems. Yield of maize increased with higher moisture availability. Highest maize grain yield was 3.13 t/ha under NLM, followed by 3.09 t/ha and 3.05 t/ha under A2WK and A1WK respectively. The results indicate that cowpea living mulch system is beneficial in conserving soil water which improves crop yield, and therefore should be encouraged in ensuring sustainable land use and management for maize production especially in arid and semi-arid areas.
LIST OF ABBREVIATIONS

A1WK  Cowpea planted 1 week after planting maize
A2WK  Cowpea 2 weeks after planting maize
ANOVA Analysis of Variance
EEM   Extra-early maize
EM    Early maize
ET    Evapotranspiration
CLM   Cowpea Living Mulch
FAO   Food and Agriculture Organization
FC    Field Capacity
IITA  International Institute of Tropical Agriculture
MM    Medium maize
MV    Maize Variety
NLM   No Living Mulch
PWP   Permanent Wilting Point
RAW   Readily Available Water
SD    Cowpea planted same day as maize
SWAT  Soil and Water Assessment Tool
SWC   Soil and Water Conservation
TAW   Total Available Water
TDR   Time Domain Reflectometer
WOCAT World Overview of Conservation Approaches and Techniques
# TABLE OF CONTENTS

DECLARATION........................................................................................................... ii
DEDICATION............................................................................................................. iii
ACKNOWLEDGEMENTS.............................................................................................. iv
ABSTRACT.................................................................................................................. v
LIST OF ABBREVIATIONS .......................................................................................... vi
TABLE OF CONTENTS ............................................................................................... viii
LIST OF TABLES ......................................................................................................... xi
LIST OF FIGURES ...................................................................................................... xii
LIST OF PLATES ........................................................................................................ xiii

CHAPTER 1 ................................................................................................................ 1
INTRODUCTION ......................................................................................................... 1
1.1 Background of Study ............................................................................................ 1
1.2 Problem Statement ............................................................................................... 4
1.4 Objectives of Study .............................................................................................. 6
   Specific objectives .................................................................................................. 6
1.5 Research Hypotheses ......................................................................................... 6
1.6 Research Questions .............................................................................................. 7

CHAPTER 2 ................................................................................................................ 8
LITERATURE REVIEW ............................................................................................... 8
2.1 Soil degradation ................................................................................................... 8
2.2 Soil and Water Conservation (SWC) and Evapotranspiration ......................... 8
2.3 Soil Water Conservation (SWC) and Soil Fertility ......................................... 9
2.4 Cereal-Legume Cropping as a Soil and Water Conservation Technique .......... 10
2.5 Mulching ............................................................................................................ 11
   2.5.1 Cowpea living mulch system ....................................................................... 13
2.6 Soil Profile Moisture Changes (Fluxes) ............................................................ 13
   2.6.1 Field Capacity (FC) ...................................................................................... 14
   2.6.2 Permanent Wilting Point (PWP) .................................................................. 15
   2.6.3 Plant Total Available Water (TAW) ............................................................ 15
   2.6.4 Readily Available Water (RAW) ................................................................. 16
2.6.5 Soil Water Retention ................................................................. 16
2.7 Soil Moisture Monitoring Equipment ........................................ 17
2.8 Root-zone Soil Water and Nutrient Cycling ................................ 17
2.9 Conditions and Impact of Maize Production Systems ............... 18
  2.9.1 Soil and Water Requirements for Maize Production ............... 18
  2.9.2 Climate and Soil Moisture Flux in Maize Production ............ 18
  2.9.3 Maize-Legume Impact on Human Nutrition ....................... 19
  2.9.4 Fodder Production ............................................................. 20

CHAPTER 3 ......................................................................................... 21
MATERIALS AND METHODS .............................................................. 21
  3.1 Study Area ................................................................................. 21
    3.1.1 Experiment Sites ................................................................. 22
  3.2 Experimental Design and Field Layout ..................................... 22
  3.3 Agronomic Activities ............................................................... 24
    3.3.1 Field preparation and Layout ............................................. 24
    3.3.2 Planting .............................................................................. 25
    3.3.3 Fertilizer Application ........................................................ 26
  3.4 Soil Analysis .............................................................................. 26
    3.4.1 Particle size distribution .................................................... 27
    3.4.2 Total Nitrogen ................................................................. 28
    3.4.3 Phosphorus ................................................................. 29
    3.4.4 Exchangeable Cations ..................................................... 30
    3.4.5 Organic Carbon ............................................................ 32
  3.5 Data Collection .......................................................................... 33
    3.5.1 Rainfall and Evapotranspiration Data ............................... 33
    3.5.2 Soil Moisture Data ............................................................ 33
    3.5.3 Crop Data ......................................................................... 35
  3.6 Calculations .............................................................................. 35
    3.6.1 Reference and Crop Evapotranspiration ......................... 35
    3.6.2 Soil moisture calibration ....................................................... 36
    3.6.3 Leaf Area ................................................................. 37
    3.6.4 Soil Moisture Holding Properties ...................................... 37
3.7 Statistical Analysis

CHAPTER 4
RESULTS
4.1 Rainfall and Evapotranspiration (ET) data for the study sites
   4.1.1 Rainfall
   4.1.2 Evapotranspiration
   4.1.3 Relationship between Maize Grain Yield and Evapotranspiration
4.2 Effect of cowpea living mulch on soil chemical properties
4.3 Effect of cowpea living mulch on soil moisture
4.4 Effect of cowpea living mulch on maize growth and yield
4.5 Effect of maize variety on soil moisture

CHAPTER 5
DISCUSSION
5.1 Soil Moisture Characteristics
5.2 Effect of CLM and Maize Variety on Soil Moisture Retentions
5.3 Effect of CLM and Maize Variety on maize growth and Yield
5.4 Effect of Maize Varieties on Soil Moisture

CHAPTER 6
CONCLUSION AND RECOMMENDATIONS
6.1 Conclusion
6.2 Recommendations
REFERENCES
APPENDIX I
APPENDIX II
APPENDIX III
LIST OF TABLES
Table 3.1: Soil texture at the different locations ................................................................. 27
Table 3.2: Crop coefficient (kc) and length of growth stages for maize and cowpea used 36
Table 3.3: Soil Moisture Characteristics for the different Blocks ...................................... 38
Table 4.1: Averages of soil properties for the different treatments at Tingoli .................... 45
Table 4.2: Averages of soil properties for the different treatments at Cheyohi No. 2 ...... 45
Table 4.3: Averages of soil properties for the different treatments at Tibali ....................... 46
Table 4.4: Averages of soil properties for the different treatments at Duko ...................... 46
Table 4.5: Means of maize plant height and girth for the different treatments .................. 48
Table 4.6: Means of number of maize leaves and LAI for the different treatments .......... 49
Table 4.7: Means of Cowpea ground cover and number pods for the different treatments 50
Table 4.8: Means of maize grain yield and number of cobs for the different treatments . 50
Table 4.9: Average change in AWR (mm) at the end of the growing season ................. 51
LIST OF FIGURES

Figure 3.1: Geographical location of the experimental sites ................................................. 22
Figure 3.2: Treatments and block randomizations ................................................................. 24
Figure 3.3: Plot Layout (Location 1) ....................................................................................... 25
Figure 4.1: Monthly and daily rainfall at Cheyohi No.2 ......................................................... 39
Figure 4.2: Average hourly Evapotranspiration for maize and cowpea at the different
          location....................................................................................................................... 40
Figure 4.3: Average daily ET for the different treatments at Cheyohi No.2 ......................... 41
Figure 4.4: Correlation between Maize Yield and Crop Evapotranspiration ..................... 43
LIST OF PLATES
Plate 3.1: Cowpea Living Mulch System ................................................................. 26
Plate 3.2: Diviner 2000 in use to collect soil moisture data ........................................ 35